mos管

mos管

mos管是金屬(metal)、氧化物(oxide)、半導體(semiconductor)場效應電晶體,或者稱是金屬—絕緣體(insulator)、半導體。MOS管的source和drain是可以對調的,他們都是在P型backgate中形成的N型區。在多數情況下,這個兩個區是一樣的,即使兩端對調也不會影響器件的性能。這樣的器件被認為是對稱的。

基本介紹

  • 中文名:mos管
  • 外文名:metal oxide semiconductor
  • 別稱:金屬—氧化物—半導體
  • 型號:電壓/電流 封裝
定義,詳細介紹,主要參數,發熱分析,常見型號,

定義

場效應管(FET),把輸入電壓的變化轉化為輸出電流的變化。FET的增益等於它的跨導, 定義為輸出電流的變化和輸入電壓變化之比。市面上常有的一般為N溝道和P溝道,詳情參考右側圖片(P溝道耗盡型MOS管)。而P溝道常見的為低壓mos管。
場效應管通過投影一個電場在一個絕緣層上來影響流過電晶體的電流。事實上沒有電流流過這個絕緣體,所以FET管的GATE電流非常小。最普通的FET用一薄層二氧化矽來作為GATE極下的絕緣體。這種電晶體稱為金屬氧化物半導體(MOS)電晶體,或,金屬氧化物半導體場效應管(MOSFET)。因為MOS管更小更省電,所以他們已經在很多套用場合取代了雙極型電晶體。
P溝道mos管符號P溝道mos管符號

詳細介紹

首先考察一個更簡單的器件——MOS電容——能更好的理解MOS管。這個器件有兩個電極,一個是金屬,另一個是extrinsic silicon(外在矽),他們之間由一薄層二氧化矽分隔開。金屬極就是GATE,而半導體端就是backgate或者body。他們之間的絕緣氧化層稱為gate dielectric(柵介質)。圖示中的器件有一個輕摻雜P型矽做成的backgate。這個MOS 電容的電特性能通過把backgate接地,gate接不同的電壓來說明。MOS電容的GATE電位是0V。金屬GATE和半導體BACKGATE在WORK FUNCTION上的差異在電介質上產生了一個小電場。在器件中,這個電場使金屬極帶輕微的正電位,P型矽負電位。這個電場把矽中底層的電子吸引到表面來,它同時把空穴排斥出表面。這個電場太弱了,所以載流子濃度的變化非常小,對器件整體的特性影響也非常小。
當MOS電容的GATE相對於BACKGATE正偏置時發生的情況。穿過GATE DIELECTRIC的電場加強了,有更多的電子從襯底被拉了上來。同時,空穴被排斥出表面。隨著GATE電壓的升高,會出現表面的電子比空穴多的情況。由於過剩的電子,矽表層看上去就像N型矽。摻雜極性的反轉被稱為inversion,反轉的矽層叫做channel。隨著GATE電壓的持續不斷升高,越來越多的電子在表面積累,channel變成了強反轉。Channel形成時的電壓被稱為閾值電壓Vt。當GATE和BACKGATE之間的電壓差小於閾值電壓時,不會形成channel。當電壓差超過閾值電壓時,channel就出現了。
MOS電容:(A)未偏置(VBG=0V),(B)反轉(VBG=3V),(C)積累(VBG=-3V)。
正是當MOS電容的GATE相對於backgate是負電壓時的情況。電場反轉,往表面吸引空穴排斥電子。矽表層看上去更重的摻雜了,這個器件被認為是處於accumulation狀態了。
MOS電容的特性能被用來形成MOS管。Gate,電介質和backgate保持原樣。在GATE的兩邊是兩個額外的選擇性摻雜的區域。其中一個稱為source,另一個稱為drain。假設source 和backgate都接地,drain接正電壓。只要GATE對BACKGATE的電壓仍舊小於閾值電壓,就不會形成channel。Drain和backgate之間的PN結反向偏置,所以只有很小的電流從drain流向backgate。如果GATE電壓超過了閾值電壓,在GATE電介質下就出現了channel。這個channel就像一薄層短接drain和source的N型矽。由電子組成的電流從source通過channel流到drain。總的來說,只有在gate 對source電壓V 超過閾值電壓Vt時,才會有drain電流。
在對稱的MOS管中,對source和drain的標註有一點任意性。定義上,載流子流出source,流入drain。因此Source和drain的身份就靠器件的偏置來決定了。有時電晶體上的偏置電壓是不定的,兩個引線端就會互相對換角色。這種情況下,電路設計師必須指定一個是drain另一個是source。
Source和drain不同摻雜不同幾何形狀的就是非對稱MOS管。製造非對稱電晶體有很多理由,但所有的最終結果都是一樣的。一個引線端被最佳化作為drain,另一個被最佳化作為source。如果drain和source對調,這個器件就不能正常工作了。
電晶體有N型channel所有它稱為N-channel MOS管,或NMOS。P-channel MOS(PMOS)管也存在,是一個由輕摻雜的N型BACKGATE和P型source和drain組成的PMOS管。如果這個電晶體的GATE相對於BACKGATE正向偏置,電子就被吸引到表面,空穴就被排斥出表面。矽的表面就積累,沒有channel形成。如果GATE相對於BACKGATE反向偏置,空穴被吸引到表面,channel形成了。因此PMOS管的閾值電壓是負值。由於NMOS管的閾值電壓是正的,PMOS的閾值電壓是負的,所以工程師們通常會去掉閾值電壓前面的符號。一個工程師可能說,“PMOS Vt從0.6V上升到0.7V”, 實際上PMOS的Vt是從-0.6V下降到-0.7V。

主要參數

1.開啟電壓VT
·開啟電壓(又稱閾值電壓):使得源極S和漏極D之間開始形成導電溝道所需的柵極電壓;
·標準的N溝道MOS管,VT約為3~6V;·通過工藝上的改進,可以使MOS管的VT值降到2~3V。
2. 直流輸入電阻RGS
·即在柵源極之間加的電壓與柵極電流之比
·這一特性有時以流過柵極的柵流表示
·MOS管的RGS可以很容易地超過1010Ω。
3. 漏源擊穿電壓BVDS
·在VGS=0(增強型)的條件下 ,在增加漏源電壓過程中使ID開始劇增時的VDS稱為漏源擊穿電壓BVDS
·ID劇增的原因有下列兩個方面:
(1)漏極附近耗盡層的雪崩擊穿
(2)漏源極間的穿通擊穿
·有些MOS管中,其溝道長度較短,不斷增加VDS會使漏區的耗盡層一直擴展到源區,使溝道長度為零,即產生漏源間的穿通,穿通後,源區中的多數載流子,將直接受耗盡層電場的吸引,到達漏區,產生大的ID
4. 柵源擊穿電壓BVGS
·在增加柵源電壓過程中,使柵極電流IG由零開始劇增時的VGS,稱為柵源擊穿電壓BVGS。
5. 低頻跨導gm
·在VDS為某一固定數值的條件下 ,漏極電流的微變數和引起這個變化的柵源電壓微變數之比稱為跨導
·gm反映了柵源電壓對漏極電流的控制能力,是表征MOS管放大能力的一個重要參數
·一般在十分之幾至幾mA/V的範圍內
6. 導通電阻RON
·導通電阻RON說明了VDS對ID的影響 ,是漏極特性某一點切線的斜率的倒數
·在飽和區,ID幾乎不隨VDS改變,RON的數值很大,一般在幾十千歐到幾百千歐之間
·由於在數字電路中 ,MOS管導通時經常工作在VDS=0的狀態下,所以這時的導通電阻RON可用原點的RON來近似
·對一般的MOS管而言,RON的數值在幾百歐以內
7. 極間電容
·三個電極之間都存在著極間電容:柵源電容CGS 、柵漏電容CGD和漏源電容CDS
·CGS和CGD約為1~3pF,CDS約在0.1~1pF之間
8. 低頻噪聲係數NF
·噪聲是由管子內部載流子運動的不規則性所引起的。·由於它的存在,就使一個放大器即便在沒有信號輸人時,在輸出端也出現不規則的電壓或電流變化
·噪聲性能的大小通常用噪聲係數NF來表示,它的單位為分貝(dB)。這個數值越小,代表管子所產生的噪聲越小
·低頻噪聲係數是在低頻範圍內測出的噪聲係數
·場效應管的噪聲係數約為幾個分貝,它比雙極性三極體的要小

發熱分析

做電源設計,或者做驅動方面的電路,難免要用到MOS管。MOS管有很多種類,也有很多作用。做電源或者驅動的使用,當然就是用它的開關作用。
無論N型或者P型MOS,其工作原理本質是一樣的。MOS管是由加在輸入端柵極的電壓來控制輸出端漏極的電流。MOS管是壓控器件它通過加在柵極上的電壓控制器件的特性,不會發生像三極體做開關時的因基極電流引起的電荷存儲效應,因此在開關套用中,MOS管的開關速度應該比三極體快。其主要原理如圖:圖1。
MOS管的工作原理MOS管的工作原理
圖1 MOS管的工作原理
我們在開關電源中常用MOS管的漏極開路電路,如圖2漏極原封不動地接負載,叫開路漏極,開路漏極電路中不管負載接多高的電壓,都能夠接通和關斷負載電流。是理想的模擬開關器件。這就是MOS管做開關器件的原理。當然MOS管做開關使用的電路形式比較多了。
NMOS管的開路漏極電路NMOS管的開路漏極電路
圖2 NMOS管的開路漏極電路
在開關電源套用方面,這種套用需要MOS管定期導通和關斷。比如,DC-DC電源中常用的基本降壓轉換器依賴兩個MOS管來執行開關功能,這些開關交替在電感里存儲能量,然後把能量釋放給負載。我們常選擇數百kHz乃至1MHz以上的頻率,因為頻率越高,磁性元件可以更小更輕。在正常工作期間,MOS管只相當於一個導體。因此,我們電路或者電源設計人員最關心的是MOS的最小傳導損耗。
我們經常看MOS管的PDF參數,MOS管制造商採用RDS(ON)參數來定義導通阻抗,對開關套用來說,RDS(ON)也是最重要的器件特性。數據手冊定義RDS(ON)與柵極(或驅動)電壓VGS以及流經開關的電流有關,但對於充分的柵極驅動,RDS(ON)是一個相對靜態參數。一直處於導通的MOS管很容易發熱。另外,慢慢升高的結溫也會導致RDS(ON)的增加。MOS管數據手冊規定了熱阻抗參數,其定義為MOS管封裝的半導體結散熱能力。RθJC的最簡單的定義是結到管殼的熱阻抗。
其發熱情況有:
1.電路設計的問題,就是讓MOS管工作線上性的工作狀態,而不是在開關狀態。這也是導致MOS管發熱的一個原因。如果N-MOS做開關,G級電壓要比電源高几V,才能完全導通,P-MOS則相反。沒有完全打開而壓降過大造成功率消耗,等效直流阻抗比較大,壓降增大,所以U*I也增大,損耗就意味著發熱。這是設計電路的最忌諱的錯誤。
2.頻率太高,主要是有時過分追求體積,導致頻率提高,MOS管上的損耗增大了,所以發熱也加大了。
3.沒有做好足夠的散熱設計,電流太高,MOS管標稱的電流值,一般需要良好的散熱才能達到。所以ID小於最大電流,也可能發熱嚴重,需要足夠的輔助散熱片。
4.MOS管的選型有誤,對功率判斷有誤,MOS管內阻沒有充分考慮,導致開關阻抗增大。

常見型號

型號 電壓/電流 封裝
2N7000 60V,0.115A TO-92
2N7002 60V,0.2A SOT-23
IRF510A 100V,5.6A TO-220
IRF520A 100V,9.2A TO-220
IRF530A 100V,14A TO-220
IRF540A 100V,28A TO-220
IRF610A 200V,3.3A TO-220
IRF620A 200V,5A TO-220
IRF630A 200V,9A TO-220
IRF634A 250V,8.1A TO-220
IRF640A 200V,18A TO-220
IRF644A 250V,14A TO-220
IRF650A 200V,28A TO-220
IRF654A 250V,21A TO-220
IRF720A 400V,3.3A TO-220
IRF730A 400V,5.5A TO-220
IRF740A 400V,10A TO-220
IRF750A 400V,15A TO-220
IRF820A 500V,2.5A TO-220
IRF830A 500V,4.5A TO-220
IRF840A 500V,8A TO-220
IRFP150A 100V,43A TO-3P
IRFP250A 200V,32A TO-3P
IRFP450A 500V,14A TO-3P
IRFR024A 60V,15A D-PAK
IRFR120A 100V,8.4A D-PAK
IRFR214A 250V,2.2A D-PAK
IRFR220A 200V,4.6A D-PAK
IRFR224A 250V,3.8A D-PAK
IRFR310A 400V,1.7A D-PAK

相關詞條

熱門詞條

聯絡我們