閉路空間

閉路空間(loop space)是一類特殊的拓撲空間

拓撲空間是歐幾里得空間的一種推廣。給定任意一個集,在它的每一個點賦予一種確定的鄰域結構便構成一個拓撲空間。拓撲空間是一種抽象空間,這種抽象空間最早由法國數學家弗雷歇於1906年開始研究。1913年他考慮用鄰域定義空間,1914年德國數學家豪斯多夫給出正式定義。

基本介紹

  • 中文名:閉路空間
  • 外文名:loop space
  • 領域:數學
  • 性質:一類特殊的拓撲空間
  • 定義:緊開拓撲之下所構成的空間
  • 記號:ΩY
概念,拓撲,拓撲空間,映射,連續映射,

概念

閉路空間(loop space)是一類特殊的拓撲空間。若(Y,y0)為一個帶有基點的拓撲空間,則所有的連續映射(S,s0)→(Y,y0)(S為一維球面,s0為它的基點)在緊開拓撲之下所構成的空間,稱為Y的閉路空間,記為ΩY。

拓撲

拓撲是集合上的一種結構。設T為非空集X的子集族。若T滿足以下條件:
1.X與空集都屬於T;
2.T中任意兩個成員的交屬於T;
3.T中任意多個成員的並屬於T;
則T稱為X上的一個拓撲。具有拓撲T的集合X稱為拓撲空間,記為(X,T)。
設T1與T2為集合X上的兩個拓撲。若有關係T1T2,則稱T1粗於T2,或T2細於T1。當X上的兩個拓撲相互之間沒有包含關係時,則稱它們是不可比較的。在集合X上,離散拓撲是最細的拓撲,平凡拓撲是最粗的拓撲。

拓撲空間

拓撲空間是歐幾里得空間的一種推廣。給定任意一個集,在它的每一個點賦予一種確定的鄰域結構便構成一個拓撲空間。拓撲空間是一種抽象空間,這種抽象空間最早由法國數學家弗雷歇於1906年開始研究。1913年他考慮用鄰域定義空間,1914年德國數學家豪斯多夫給出正式定義。豪斯多夫把拓撲空間定義為一個集合,並使用了“鄰域”概念,根據這一概念建立了抽象空間的完整理論,後人稱他建立的這種拓撲空間為豪斯多夫空間(即現在的T2拓撲空間)。同時期的匈牙利數學家裡斯還從導集出發定義了拓撲空間。20世紀20年代,原蘇聯莫斯科學派的數學家П.С.亞里山德羅夫與烏雷松等人對緊與列緊空間理論進行了系統研究,並在距離化問題上有重要貢獻。1930年該學派的吉洪諾夫證明了緊空間的積空間的緊性,他還引進了拓撲空間的無窮乘積(吉洪諾夫乘積)和完全正規空間(吉洪諾夫空間)的概念。
20世紀30年代後,法國數學家又在拓撲空間方面做出新貢獻。1937年布爾巴基學派的主要成員H.嘉當引入“濾子”、“超濾”等重要概念,使得“收斂”的更本質的屬性顯示出來。韋伊提出一致性結構的概念,推廣了距離空間,還於1940年出版了《拓撲群的積分及其套用》一書。1944年迪厄多內引進雙緊緻空間,提出仿緊空間是緊空間的一種推廣。1945年弗雷歇又提出抽象距的概念,他的學生們進行了完整的研究。布爾巴基學派的《一般拓撲學》亦對拓撲空間理論進行了補充和總結。
此外,美國數學家斯通研究了剖分空間的可度量性,1948年證明了度量空間是仿緊的等結果。捷克數學家切赫建立起緊緻空間的包絡理論,為一般拓撲學提供了有力工具。他的著作《拓撲空間論》於1960年出版。近幾十年來拓撲空間理論仍在繼續發展,不斷取得新的成果。

映射

映射亦稱函式。數學的基本概念之一。也是一種特殊的關係。設G是從X到Y的關係,G的定義域D(G)為X,且對任何x∈X都有惟一的y∈Y滿足G(x,y),則稱G為從X到Y的映射。即關係G為映射時,應滿足下列兩個條件:
1.(x∈X)(y∈Y)(xGy).
2.(x∈X)(y∈Y)(z∈Y)((xGy∧xGz)→y=z).這個被x∈X所惟一確定的y∈Y,通常表示為y=f(x)(x∈X).f(x)滿足:
1) f(x)∈Y.
2) G(x,f(x))成立(x∈X).
3)z∈Y,G(x,z)→z=f(x).
關係G常使用另一些記號:f:X→Y或XY.f與G的關係是y=f(x)(x∈X),若且唯若G(x,y)成立.可取變域X中的不同元素為值的變元稱為自變元或自變數。同樣可取變域Y中的不同元素為值的變元稱為因變元或因變數。始集X稱為映射f的定義域。記為D(f)或dom(f).終集Y稱為映射的陪域,記為C(f)或codom(f).Y中與X中的元素有關係G的元素的組合{y|x(x∈X∧y=f(x)∈Y)}稱為映射的值域,記為R(f)或ran(f)。當y=f(x)時,y稱為x的象,而x稱為y的原象。y的所有原象所成之集用f(y)表示。對於AX,所有A中元素的象的集合{y|x(x∈A∧y=f(x)∈Y)}或{f(x)|x∈A}稱為A的象.記為f(A).對於BY,所有B中元素的原象的集合{x|x∈X∧y(y∈B∧y=f(x))}稱為B的原象。記為f(B)。顯然:f(A)=f(x),f(B)=f(y)。

連續映射

設f為從拓撲空間E到拓撲空間F中的映射。稱f在E的點x0是連續的,如果對f(x0)在F中的任一鄰域W,在E中存在x0的鄰域V,使在f下V的象包含在W中;換言之,如果在f下f(x0)的任一鄰域的逆象是x0的鄰域。
稱f在E上是連續的(或簡稱f是連續的),如果它在E的每一點都連續。
為使f是連續的,必須且只須F的任一閉集經由f的逆象是E的閉集,或F的任一開集經由f的逆象是E的開集。但是E的開集(閉集)經由連續映射的正象不一定是F的開集(閉集)。
從E到F中的常映射是連續的.E的恆等映射是連續的。
任一從離散空間到拓撲空間的映射是連續的。
設E,F及G為拓撲空間,f為從E到F中的連續映射,而g為從F到G中的連續映射,則複合映射g°f是連續的.
當E與F為分別賦以距離d及e的度量空間時,為使f在x0點連續,其充分必要條件是:對任一嚴格正的實數ε,存在嚴格正的實數η,使得由關係d(x,x0)≤η可推出e(f(x),f(x0))≤ε。若f為定義在R的子集P上的有限數值函式,則使f在x0點連續的充分必要條件是:對任一嚴格正的實數ε,存在嚴格正的實數η,使得對P的任一元素x,關係|x-x0| ≤η蘊涵。

相關詞條

熱門詞條

聯絡我們