硬碟存儲器

硬碟存儲器即是磁碟存儲器的一個分類。以磁碟為存儲介質的存儲器。它是利用磁記錄技術在塗有磁記錄介質的旋轉圓盤上進行數據存儲的輔助存儲器。具有存儲容量大、數據傳輸率高、存儲數據可長期保存等特點。在計算機系統中,常用於存放作業系統、程式和數據,是主存儲器的擴充。發展趨勢是提高存儲容量,提高數據傳輸率,減少存取時間,並力求輕、薄、短、小。磁碟存儲器通常由磁碟、磁碟驅動器(或稱磁碟機)和磁碟控制器構成。

基本介紹

  • 中文名:硬碟存貯器
  • 外文名:hard disk
硬碟存儲器物理結構,磁頭,磁軌,扇區,柱面,硬碟的基本參數,容量,轉速,平均訪問時間,傳輸速率,快取,移動問題,

硬碟存儲器物理結構

磁頭

硬碟內部結構磁頭是硬碟中最昂貴的部件,也是硬碟技術中最重要和最關鍵的一環。傳統的磁頭是讀寫合一的電磁感應式磁頭,但是,硬碟的讀、寫卻是兩種截然不同的操作,為此,這種二合一磁頭在設計時必須要同時兼顧到讀/寫兩種特性,從而造成了硬碟設計上的局限。而MR磁頭(Magnetoresistive heads),即磁阻磁頭,採用的是分離式的磁頭結構:寫入磁頭仍採用傳統的磁感應磁頭(MR磁頭不能進行寫操作),讀取磁頭則採用新型的MR磁頭,即所謂的感應寫、磁阻讀。這樣,在設計時就可以針對兩者的不同特性分別進行最佳化,以得到最好的讀/寫性能。另外,MR磁頭是通過阻值變化而不是電流變化去感應信號幅度,因而對信號變化相當敏感,讀取數據的準確性也相應提高。而且由於讀取的信號幅度與磁軌寬度無關,故磁軌可以做得很窄,從而提高了碟片密度,達到200MB/英寸2,而使用傳統的磁頭只能達到20MB/英寸2,這也是MR磁頭被廣泛套用的最主要原因。目前,MR磁頭已得到廣泛套用,而採用多層結構和磁阻效應更好的材料製作的GMR磁頭(Giant Magnetoresistive heads)也逐漸普及。

磁軌

當磁碟旋轉時,磁頭若保持在一個位置上,則每個磁頭都會在磁碟表面劃出一個圓形軌跡,這些圓形軌跡就叫做磁軌。這些磁軌用肉眼是根本看不到的,因為它們僅是盤面上以特殊方式磁化了的一些磁化區,磁碟上的信息便是沿著這樣的軌道存放的。相鄰磁軌之間並不是緊挨著的,這是因為磁化單元相隔太近時磁性會相互產生影響,同時也為磁頭的讀寫帶來困難。一張1.44MB的3.5英寸軟碟,一面有80個磁軌,而硬碟上的磁軌密度則遠遠大於此值,通常一面有成千上萬個磁軌。

扇區

磁碟上的每個磁軌被等分為若干個弧段,這些弧段便是磁碟的扇區,每個扇區可以存放512個位元組的信息,磁碟驅動器在向磁碟讀取和寫入數據時,要以扇區為單位。1.44MB3.5英寸的軟碟,每個磁軌分為18個扇區。

柱面

硬碟通常由重疊的一組碟片構成,每個盤面都被劃分為數目相等的磁軌,並從外緣的“0”開始編號,具有相同編號的磁軌形成一個圓柱,稱之為磁碟的柱面。磁碟柱面數與一個盤面上的磁軌數是相等的。由於每個盤面都有自己的磁頭,因此,盤面數等於總的磁頭數。所謂硬碟的CHS,即Cylinder(柱面)、Head(磁頭)、Sector(扇區),只要知道了硬碟的CHS的數目,即可確定硬碟的容量,硬碟的容量=柱面數*磁頭數*扇區數*512B。

硬碟的基本參數

容量

作為計算機系統的數據存儲器,容量是硬碟最主要的參數。
硬碟的容量以兆位元組(MB)或千兆位元組(GB)為單位,1GB=1024MB。但硬碟廠商在標稱硬碟容量時通常取1G=1000MB,因此我們在BIOS中或在格式化硬碟時看到的容量會比廠家的標稱值要小。
硬碟的容量指標還包括硬碟的單碟容量。所謂單碟容量是指硬碟單片碟片的容量,單碟容量越大,單位成本越低,平均訪問時間也越短。
對於用戶而言,硬碟的容量就象記憶體一樣,永遠只會嫌少不會嫌多。Windows作業系統帶給我們的除了更為簡便的操作外,還帶來了檔案大小與數量的日益膨脹,一些應用程式動輒就要吃掉上百兆的硬碟空間,而且還有不斷增大的趨勢。因此,在購買硬碟時適當的超前是明智的。近兩年主流硬碟是80G,而160G以上的大容量硬碟亦已開始逐漸普及。
一般情況下硬碟容量越大,單位位元組的價格就越便宜,但是超出主流容量的硬碟略微例外。時至2008年12月初,1TB(1000GB)的希捷硬碟中關村報價是¥700元,500G的硬碟大概是¥320元。

轉速

轉速(Rotational speed 或Spindle speed)是指硬碟碟片每分鐘轉動的圈數,單位為rpm。
早期IDE硬碟的轉速一般為5200rpm或5400rpm,曾經Seagate的“大灰熊”系列和Maxtor則達到了7200rpm,是IDE硬碟中轉速最快的。如今的硬碟都是7200rpm的轉速,而更高的則達到了10000rpm。

平均訪問時間

平均訪問時間(Average Access Time)是指磁頭從起始位置到達目標磁軌位置,並且從目標磁軌上找到要讀寫的數據扇區所需的時間。
平均訪問時間體現了硬碟的讀寫速度,它包括了硬碟的尋道時間和等待時間,即:平均訪問時間=平均尋道時間+平均等待時間
硬碟的平均尋道時間(Average Seek Time)是指硬碟的磁頭移動到盤面指定磁軌所需的時間。這個時間當然越小越好,目前硬碟的平均尋道時間通常在8ms到12ms之間,而SCSI硬碟則應小於或等於8ms。
硬碟的等待時間,又叫潛伏期(Latency),是指磁頭已處於要訪問的磁軌,等待所要訪問的扇區旋轉至磁頭下方的時間。平均等待時間為碟片旋轉一周所需的時間的一半,一般應在4ms以下。

傳輸速率

傳輸速率(Data Transfer Rate) 硬碟的數據傳輸率是指硬碟讀寫數據的速度,單位為兆位元組每秒(MB/s)。硬碟數據傳輸率又包括了內部數據傳輸率和外部數據傳輸率。
內部傳輸率(Internal Transfer Rate) 也稱為持續傳輸率(Sustained Transfer Rate),它反映了硬碟緩衝區未用時的性能。內部傳輸率主要依賴於硬碟的旋轉速度。
外部傳輸率(External Transfer Rate)也稱為突發數據傳輸率(Burst Data Transfer Rate)或接口傳輸率,它標稱的是系統匯流排與硬碟緩衝區之間的數據傳輸率,外部數據傳輸率與硬碟接口類型和硬碟快取的大小有關。
目前Fast ATA接口硬碟的最大外部傳輸率為16.6MB/s,而Ultra ATA接口的硬碟則達到33.3MB/s。
使用SATA(Serial ATA)口的硬碟又叫串口硬碟,是未來PC機硬碟的趨勢。2001年,由Intel、APT、Dell、IBM、希捷邁拓這幾大廠商組成的Serial ATA委員會正式確立了Serial ATA 1.0規範。2002年,雖然串列ATA的相關設備還未正式上市,但Serial ATA委員會已搶先確立了Serial ATA 2.0規範。Serial ATA採用串列連線方式,串列ATA匯流排使用嵌入式時鐘信號,具備了更強的糾錯能力,與以往相比其最大的區別在於能對傳輸指令(不僅僅是數據)進行檢查,如果發現錯誤會自動矯正,這在很大程度上提高了數據傳輸的可靠性。串列接口還具有結構簡單、支持熱插拔的優點。
硬碟存儲器
串口硬碟是一種完全不同於並行ATA的新型硬碟接口類型,由於採用串列方式傳輸數據而知名。相對於並行ATA來說,就具有非常多的優勢。首先,Serial ATA以連續串列的方式傳送數據,一次只會傳送1位數據。這樣能減少SATA接口的針腳數目,使連線電纜數目變少,效率也會更高。實際上,Serial ATA 僅用四支針腳就能完成所有的工作,分別用於連線電纜、連線地線、傳送數據和接收數據,同時這樣的架構還能降低系統能耗和減小系統複雜性。其次,Serial ATA的起點更高、發展潛力更大,Serial ATA 1.0定義的數據傳輸率可達150MB/s,這比最快的並行ATA(即ATA/133)所能達到133MB/s的最高數據傳輸率還高,而在Serial ATA 2.0的數據傳輸率達到300MB/s,最終SATA將實現600MB/s的最高數據傳輸率。

快取

與主機板上的高速快取(RAM Cache)一樣,硬碟快取的目的是為了解決系統前後級讀寫速度不匹配的問題,以提高硬碟的讀寫速度。目前,大多數SATA硬碟的快取為8M,而Seagate的“酷魚”系列則使用了32M Cache。

移動問題

7*24小時開機對普通的桌面級硬碟,也就是你用的這種並不是太合適,最好需要的時候插上去不需要的時候拔下來,不過你如果想一直不斷電插著估計也不會出什麼太大的問題,因為我有兩塊硬碟就是在這么用....大概四個月了沒有什麼問題。另外你如果很怕硬碟掛掉,定期用HDtune檢測下吧,這軟體很普及很容易就能找到下載,如果再分配扇區數不是0的話考慮備份數據了,超過閾值的話就要換硬碟了。

相關詞條

熱門詞條

聯絡我們