生物氧化

生物氧化是在生物體內,從代謝物脫下的氫及電子﹐通過一系列酶促反應與氧化合成水﹐並釋放能量的過程。也指物質在生物體內的一系列氧化過程。主要為機體提供可利用的能量。在真核生物細胞內,生物氧化都是在線粒體內進行,原核生物則在細胞膜上進行。

基本介紹

  • 中文名:生物氧化
  • 外文名:biological oxidation
  • 別稱:組織呼吸
  • 特點:為機體提供可利用的能量
  • 過程酶促反應與氧化合成水
  • 部位線粒體、細胞膜
概念,特點,部位,所屬體系,酶類,體系,氧化生成,氧化作用,相關因素,

概念

有機物質在生物體細胞內氧化分解產生二氧化碳、水,並釋放出大量能量的過程稱為生物氧化(biological oxidation),又稱細胞呼吸或組織呼吸。

特點

生物氧化和有機物質體外燃燒在化學本質上是相同的,遵循氧化還原反應的一般規律,所耗的氧量、最終產物和釋放的能量均相同。
(1)是在細胞內進行酶催化的氧化過程,反應條件溫和(水溶液中PH約為7和常溫)。
(2)在生物氧化的過程中,同時伴隨生物還原反應的產生。
(3)水是許多生物氧化反應的供氧體,通過加水脫氫作用直接參與了氧化反應
(4)在生物氧化中,碳的氧化和氫化是非同步進行。氧化過程中脫下來的質子和電子,通常由各種載體,如NADH等傳遞給氧並最終生成水。
(5)生物氧化是一個分步進行的過程。每一步都有特殊的酶催化,每一步反應的產物都可以分離出來。這種逐步反應的模式有利於在溫和的條件下釋放能量,提高能源利用率。
(6)生物氧化釋放的能量,通過與ATP合成相偶聯,轉換成生物體能夠直接利用的生物能ATP。

部位

真核生物細胞內,生物氧化主要在線粒體內進行,原核生物則在細胞膜上進行。

所屬體系

酶類

重要的為氧化酶和脫氫酶兩類,脫氫酶尤為重要。
氧化酶為含銅或鐵的蛋白質,能激活分子氧,促進氧對代謝物的直接氧化,只能以氧為受氫體,生成水。重要的有細胞色素氧化酶,可使還原型氧化成氧化型,亦可將氫放出的電子傳遞給分子氧使其活化。心肌中含量甚多。此外還有過氧化物酶過氧化氫酶等。
脫氫酶分需氧脫氫酶不需氧脫氫酶。前者可激活代謝物分子中的氫,與分子氧結合,產生過氧化氫。在無分子氧時,可利用亞甲藍為受氫體。需氧脫氫酶皆以FMN或FAD為輔酶。不需氧脫氫酶可激活代謝物分子中的氫,使脫出的氫轉移給遞氫體或非分子氧。一般在無氧或缺氧環境下促進代謝物氧化。大部分以NAD或NADP為輔酶。

體系

有不需傳遞體和需傳遞體的兩種體系。
不需傳遞體的最簡單,在微粒體過氧化酶體及胞液中代謝物經氧化酶或需氧脫氫酶作用後脫出的氫給分子氧生成水或過氧化氫。其特點是不伴磷酸化,不生成ATP,主要與體內代謝物、藥物和毒物的生物轉化有關。
需傳遞體的最典型的是呼吸鏈。是在線粒體多酶體系催化,即通過電子傳遞鏈完成,與ATP的生成相關。

氧化生成

生物氧化中CO2的生成是代謝中有機酸脫羧反應所致。有直接脫羧氧化脫羧兩種類型。按脫羧基的位置又有α-脫羧和β-脫羧之分。

氧化作用

糖代謝中的三羧酸循環和脂肪酸β-氧化是在線粒體內生成NADH還原當量),可立即通過電子傳遞鏈進行氧化磷酸化。在細胞的胞漿中產生的NADH ,如糖酵解生成的NADH則要通過穿梭系統(shuttle system)使NADH的氫進入線粒體內膜氧化。
(一)α-磷酸甘油穿梭作用
這種作用主要存在於腦、骨骼肌中,載體是α-磷酸甘油
胞液中的NADH在α-磷酸甘油脫氫酶的催化下,使磷酸二羥丙酮還原為α-磷酸甘油,後者通過線粒體內膜,並被內膜上的α-磷酸甘油脫氫酶(以FAD為輔基)催化重新生成磷酸二羥丙酮和FADH2,後者進入琥珀酸氧化呼吸鏈,生成1.5分子ATP。葡萄糖在這些組織中徹底氧化生成的ATP比其他組織要少,1摩爾G→30摩爾ATP。
胞液中的NADH蘋果酸脫氫酶催化下,使草醯乙酸還原成蘋果酸,後者藉助內膜上的α-酮戊二酸載體進入線粒體,又線上粒體內蘋果酸脫氫酶的催化下重新生成草醯乙酸和NADH。NADH進入NADH氧化呼吸鏈,生成2.5分子ATP。草醯乙酸經穀草轉氨酶催化生成天冬氨酸,後者再經酸性胺基酸載體轉運出線粒體轉變成草醯乙酸。

相關因素

(一)抑制劑
能阻斷呼吸鏈某一部位電子傳遞的物質稱為呼吸鏈抑制劑。
魚藤酮、安密妥在NADH脫氫酶處抑制電子傳遞,阻斷NADH的氧化,但FADH2的氧化仍然能進行。
抗黴素A抑制電子在細胞色素bc1複合體處的傳遞。
氰化物、CO、疊氮化物(N3-)抑制細胞色素氧化酶
對電子傳遞及ADP磷酸化均有抑制作用的物質稱氧化磷酸化抑制劑,如寡黴素
(二)解偶聯劑
2,4-二硝基苯酚(DNP)和頡氨黴素可解除氧化和磷酸化的偶聯過程,使電子傳遞照常進行而不生成ATP。DNP的作用機制是作為H+的載體將其運回線粒體內部,破壞質子梯度的形成。由電子傳遞產生的能量以熱被釋出。
(三)ADP的調節作用
正常機體氧化磷酸化的速率主要受ADP水平的調節,只有ADP被磷酸化形成ATP,電子才通過呼吸鏈流向氧。如果提供ADP,隨著ADP的濃度下降,電子傳遞進行,ATP在合成,但電子傳遞隨ADP濃度的下降而減緩。此過程稱為呼吸控制,這保證電子流只在需要ATP合成時發生。

相關詞條

熱門詞條

聯絡我們