同倫論

同倫論是拓撲學的重要概念。應該指出,映射的同倫關係是從拓撲空間X到Y的所有連續映射所成集合上的一個 等價關係,它將這些映射分成一些等價類,稱每個等價類為一個同倫類。研究映射的同倫分類問題是同倫論的基本內容之一。

基本介紹

  • 中文名:同倫論
  • 外文名:homotopy theory
  • 領域:數學
  • 學科:拓撲學
  • 映射:同倫映射
  • 空間:拓撲空間
概念,發展,同倫,同倫映射,拓撲學,

概念

直觀地說,從拓撲空間X到拓撲空間y的連續映射f,g是同倫的,是指在y中可將f 連續形變成 g,設
都是連續映射,
,若存在連續映射
,使得對所有
則稱f和g是同倫的映射,記為
稱H 為從f到g的一個同倫或倫移,這時的
,若對所有t,同倫
都是X到Y的同胚,則稱f合痕於g。應該指出,映射的同倫關係是從拓撲空間X到Y的所有連續映射所成集合c(x,y)上的一個 等價關係,它將這些映射分成一些等價類,稱每個等價類為一個同倫類。研究映射的同倫分類問題是同倫論的基本內容之一。

發展

代數拓撲學中研究與連續映射的連續形變有關的各種課題,是代數拓撲學的一個主要組成部分。同倫概念的直觀解釋就是連續變形,以此為基礎定義的基本群被稱為同倫群。最早論及同倫群的是法國數學家龐加萊,他於1895年引進的復形基本群被稱為第一同倫群。1912年荷蘭數學家布勞威爾引入同維流形之間映射的度以研究同倫分類,開創不動點理論。20世紀20年代德國數學家霍普夫探討了球面同倫理論。20世紀30年代波蘭數學家胡雷維奇建立了群的同倫理論,引進拓撲空間的n維同倫群。另一位波蘭數學家博蘇克於1936年定義了從拓撲空間到n維球面的映射類的和,由此得到博蘇克上同倫群。20世紀40年代原蘇聯數學家龐特里亞金給出從(n+k)維球到n維球的映射同倫分類,被稱為龐特里亞金類。20世紀50年代初,法國數學家塞爾提出了研究同倫群的新方法,利用纖維化的譜序列,取得了球面同倫群計算的突破性進展。20世紀50年代末英國數學家J.F.亞當斯提出新的譜序列,成為研究同倫論的重要工具。20世紀60年代初廣義同調論的發展使同調的問題可以轉化為同倫的問題,從此代數拓撲學的這兩個主要分支統一起來,共同獲得重大發展。

同倫

設f、g是拓撲空間X到Y的兩個連續映射,若存在連續映射H:X×I→Y使得:H(x,0)=f(x),H(x,1)=gx∈X則稱f與g同倫,記為f≃g:X→Y或f≃g,映射H稱為f與g之間的一個同倫。f與g的同倫H也可理解為單參數映射族{ht}t∈I,ht連續地依賴於t且h0=f,h1=g,即當參數t從0變到1時,映射f連續地形變為g。與常值映射同倫的映射稱為零倫的。若以C[X,Y]表示X到Y的一切連續映射之集,則同倫關係≃是C[X,Y]上等價關係,每個等價類稱為一個同倫類,同倫類的全體所成集記為[X,Y]。設Y是R的子空間,f,g:X→Y是連續映射,若對每個x∈X,點f(x)與g(x)可由Y中線段連結,則f≃g:X→Y,若Y是R中凸集,任何映射f:X→Y都零倫,即[X,Y]僅含一個元素。設X,Y與Z均為拓撲空間,若f≃f:X→Y,g≃g: Y→Z,則gf≃gf: X→Z。
設X,Y為拓撲空間,若存在連續映射f:X→Y和g:Y→X,使得gf≃Idx且f·g≃idr。這Id、id均表示恆同映射,則稱f為同倫等價,g為f的同倫逆,而將X與Y稱為具有相同的倫型,或簡稱同倫的,記作X≃Y。與單點空間同倫的空間稱為可縮的,或者存在x0∈X,使得常值映射C:X→X。x1→x0與映射idx同倫,空間X可縮。R和R中凸集均為可縮空間。同倫關係是拓撲空間之間的等價關係。X可縮等價於下列幾條中任意一條:(1)idx≃0,即恆同映射idx零倫。(2) 對任意空間Y,映射f:X→Y,有f≃0。(3)對任意空間Z和連續映射g:Z→X,g≃0。
設A是空間X的子空間,i:A→X表包含映射,若存在連續映射r:X→A,使得r|A=idA(或r·i=idA),則r稱為X到A的保核收縮,A稱為X的收縮核。若有保核收縮r:X→A滿足i·ridx:X→X,則H稱為X到A的形變收縮,A稱為X的形變收縮核,若同倫H還滿足對任意x∈A和t∈I有H(x,t)=x,則H稱為X到A的一個強形變收縮,A稱為X的強形變收縮核。強形變收縮是形變收縮,且若A是X的形變收縮核,則內射i:A→X是同倫等價。
兩個拓撲空間X和Y同倫等價的充要條件是:存在空間Z,使得X與Y分別同胚於Z的兩個強形變收縮核。
倫型相同的拓撲空間所共有的性質稱為同倫不變數。由於同胚的空間必同倫,故同倫不變數一定是拓撲不變數。代數拓撲學主要研究空間的同倫。
設A為空間X的子空間,序偶 (X,A) 稱為空間偶,連續映射f: X→Y,把A映到Y的子空間B內,則記f:(X,A)→(Y,B)。若有連續映射f:(X,A)→(Y,B),g:(Y,B)→(X,A)使得g·f=idx,f·g=idY,則f為空間偶的同胚。同樣有偶的同倫的概念。若有偶的同倫:fg:(X,A)→(Y,B)滿足:對任意t∈I,x∈A有H(x,t)=f(x)=g(x),稱f和g相對於A同倫,記作:
當A為空集∅時,相對同倫就是一般同倫。設A⊂X,則A是X的強形變收縮核的充要條件是:存在收縮映射(保核收縮)r:X→A使得ir≃idx:X→XrelA,其中i:A→X為內射。

同倫映射

同倫映射是拓撲學的重要概念。直觀地說,從拓撲空間X到拓撲空間Y的連續映射f,g是同倫的,是指在Y中可將f連續形變成g。設f,g:X→Y都是連續映射,I=[0,1],若存在連續映射H:X×I→Y,使得對所有x∈X,
則稱f和g是同倫的映射,記為fg:X→Y,稱H為從f到g的一個同倫或倫移,該同倫也可記為H:fg。有時記H(x,t)≡ft(x),這時的f0=f,f1=g,若對所有t,同倫ft都是X到Y的同胚,則稱f合痕於g.應該指出,映射的同倫關係是從拓撲空間X到Y的所有連續映射所成集合C(X,Y)上的一個等價關係,它將這些映射分成一些等價類,稱每個等價類為一個同倫類。研究映射的同倫分類問題是同倫論的基本內容之一。

拓撲學

現代數學的重要的分支學科。它研究幾何形體在連續形變,精確地說,雙方一一而且雙方連續的變換(稱為同胚)之下保持不變的性質。理解的廣泛些,它是研究數學中連續性現象的學科。
拓撲學萌芽很早,但直到19世紀末才開始從不同的方面正式形成學科。20世紀末,拓撲學已發展為現代數學的一個龐大的學科,包括作為現代數學的基礎的拓撲空間理論為核心內容的一般拓撲學,運用抽象代數的概念和方法為工具的代數拓撲學,進而派生出以流形為主要對象的微分拓撲學以及幾何拓撲學等方面。拓撲學可簡稱為拓撲,但拓撲一詞還可作為拓撲空間中的拓撲結構理解。
拓撲學最初被稱為形勢幾何學(geometria situs),這是萊布尼茨(Leibniz,G.W.)於1679年提出的,他預見到現在所稱的組合拓撲學。最早為人所知的拓撲學定理可能是所謂的歐拉公式.歐拉(Euler,L.)於1750年發表了任何閉的凸多面體的頂點數v,棱數e和面數f有關係v-e+f=2.用現代說法,它是一個拓撲不變數,稱為歐拉示性數.據史學家考證,笛卡兒(Descartes,R.)在1639年就知道它,並且萊布尼茨通過笛卡兒未發表的手稿於1675年得知這一結果。另一著名的結果是哥尼斯堡七橋問題的解決,歐拉在1736年將問題表成能否一筆畫一個給定的圖,並給出了一般性的解答.德國數學家高斯(Gauss,C.F.)於1827年得到曲面上曲率的積分與歐拉示性數的關係,他於1823年在電動力學中用線積分定義了空間中兩條封閉曲線的環繞數。利斯廷(Listing,J.B.)於1848年第一次採用了拓撲學一詞,其實他認為寧願用形勢幾何,只是已被別人采作他用.黎曼(Riemann,B.)於1851年定義了黎曼面,引進了連通性和虧格,實際上解決了可定向閉曲面的分類問題,給拓撲學的建立以巨大的推動。1858年,默比烏斯(Mo¨bius,A.F.)和利斯廷獨立地發現了單側的曲面,現被更確切地稱為不可定向曲面.默比烏斯於1863年恰當地指出形勢幾何學的定義。貝蒂(Betti,E.)於1870年定義了高維的連通性。若爾當(Jordan,C.)於1887年提出曲線定理,但證明是錯的,直到1905年才得證。
拓撲學正式成為一門獨立的學科是龐加萊(Poincaré,H.)實現的。他於1892年發表了題為“論形勢分析”的短文,然後於1895年發表了題為“形勢分析”的120頁的長文,介紹它的概念,其中有同調、貝蒂數、相交、基本群,甚至隱含著上同調;建立了對偶定理和歐拉-龐加萊公式.隨後直到1904年,他連續發表了五篇補充,為改進前述長文中的缺點創立了剖分方法,定義了撓係數,開始探討三維流形的拓撲分類,構造出基本群不平凡而一維貝蒂數平凡的三維流形,並提出了著名的至今尚未解決的龐加萊猜想:基本群平凡的三維閉流形同胚於三維球面.這幾篇文章奠定了組合拓撲學的基礎,其思想之豐富,觀念之深刻,影響之深遠,一言難盡,但不夠嚴密或缺乏證明,後來的進展正是從此入手,將這門學科建立在嚴格的邏輯上而發展為後來的組合拓撲學、代數拓撲學,進而發展出微分拓撲學等學科和分支。
拓撲學的另一個淵源是分析學的嚴密化.實數的嚴格理論以及傅立葉級數惟一性的討論推動著德國數學家康托爾(Cantor,G.)從1872年起系統地展開了歐氏空間中點集的研究,得出極限點、導集等概念,進而得到開集、閉集、稠密性和連通性等概念,並從歐氏空間的點集發展為一般的集合論以及超限基數和序數的理論。這一革命性的進展結合19世紀另一由非歐幾何引起的革命性的進展——數學公理化的潮流,產生了抽象空間的研究。弗雷歇(Fréchet,M.R.)於1906年定義了度量空間豪斯多夫(Hausdorff,F.)於1914年出版了《集論大綱》,用開鄰域定義了一般的拓撲空間,標誌著用公理化方法研究連續性的一般拓撲學的產生。隨後,對拓撲空間的基本性質如分離性、緊緻性、連通性和維數等開展了系統研究,至20世紀30年代中期後,開展了關於一致性和仿緊性的研究,到20世紀50年代初,度量化問題獲得基本解決,此時,一般拓撲學已發展成熟,並且其基本理論已成為現代數學的共同基礎。

相關詞條

熱門詞條

聯絡我們