chemical engineering

chemical engineering

研究化學工業和其他過程工業 (process industry) 生產中所進行的化學過程和物理過程共同規律的一門工程學科。這些工業除了包括傳統化工製造(如石油精煉,金屬材料,塑膠合成,食品加工和催化製造等),現代化工還囊括了生物工程,生物製藥,以及相關的納米技術。並且此類現代化工在近年來發展非常迅速。並且給人類的生活帶來了極大的便利,並且對人類生活方式產生了深遠影響。

基本介紹

  • 中文名:化學工程
  • 外文名:Chemical Engineering
  • 研究內容: 單元操作,化學反應工程
詳細介紹,英文定義,中文定義,特點,研究對象,研究內容,單元操作,化學反應工程,傳遞過程,化工熱力學,其他問題,發展方向,

詳細介紹

英文定義

Chemical engineering deals with the design, construction, and operation of plants and machinery for making such products as acids, dyes, drugs, plastics, and synthetic rubber by adapting the chemical reactions discovered by the laboratory chemist to large-scale production. The chemical engineer must be familiar with both chemistry and mechanical engineering.

中文定義

化學工程是指物質發生化學變化的反應過程,如柴油的催化裂化製備高辛烷值汽油是一個化學反應過程。
物理過程系指物質不經化學反應而發生的組成、性質、狀態、能量變化過程,如原油經過蒸餾的分離而得到汽油、柴油、煤油等產品。
至於其他一些領域,諸如礦石冶煉,燃料燃燒,生物發酵,皮革製造,海水淡化等等,雖然過程的表現形式多種多樣,但均可以分解為上述化學過程和物理過程。實際上,化學過程往往和物理過程同時發生。例如催化裂化是一個典型的化學過程,但輔有加熱、冷卻和分離,並且在反應進行過程中,也必伴隨有流動、傳熱和傳質。所有這些過程,都可通過化學工程的研究,認識和闡釋其規律性,並使之套用於生產過程和裝置的開發、設計、操作,以達到最佳化和提高效率的目的。

特點

上述工業生產的共同特點是,從實驗室到工業生產特別是大規模的生產,都要解決一個裝置的放大問題。生產規模擴大和經濟效益提高的重要途徑是裝置的放大,以節省投資,降低消耗,減少占地,節約人力。但是,在大裝置上所能達到的某些指標,通常低於小型試驗結果,原因是隨著裝置的放大,物料的流動、傳熱、傳質等物理過程的因素和條件發生了變化。這種起源於放大過程的效應,長期以來被籠統地稱作“放大效應”,它包含了很多已查明或未查明的物理因素(或稱工程因素)的影響。

研究對象

化學工程的一個重要任務就是研究有關工程因素對過程和裝置的效應,特別是在放大中的效應,以解決關於過程開發、裝置設計和操作的理論和方法等問題。它以物理學、化學和數學的原理為基礎,廣泛套用各種實驗手段,與化學工藝相配合,去解決工業生產問題。
化學工程的研究對象通常是非常複雜的,主要表現在:
①過程本身的複雜性:既有化學的,又有物理的,並且兩者時常同時發生, 相互影響。
②物系的複雜性:既有流體(氣體和液體),又有固體,時常多相共存。流體性質可有大幅度變化,如低粘度和高粘度、牛頓型和非牛頓型等。
有時,在過程進行中有物性顯著改變,如聚合過程中反應物系從低粘度向高粘度的轉變。
③物系流動時邊界的複雜性:由於設備(如塔板、攪拌槳、檔板等)的幾何形狀是多變的,填充物(如催化劑、填料等)的外形也是多變的,使流動邊界複雜且難以確定和描述。

研究內容

化學工程包括單元操作化學反應工程、傳遞過程、化工熱力學、化工系統工程、過程動態學及控制等方面。

單元操作

構成多種化工產品生產的物理過程都可歸納為有限的幾種基本過程,如流體輸送、換熱(加熱和冷卻)、蒸餾、吸收、蒸發、萃取、結晶、乾燥等。這些基本過程稱為單元操作。對單元操作的研究,得到具有共性的結果,可以用來指導各類產品的生產和化工設備的設計。在20世紀初,對化學工程的認識雖只限於單元操作,但卻開拓了一個嶄新的領域和出現了一些從事嶄新職業的化學工程師。這些化學工程師不同於以往的化工生產工作者,他們經歷過化學工程這一專門學科的訓練,故有能力使化工生產過程和設備設計、製造和操作控制更為合理。直到今天,各個單元操作的研究還是有著極為重要的理論意義和套用價值,而且是為了適應新的技術要求,一些新的單元操作不斷出現並逐步充實進來。

化學反應工程

化學反應是化工生產的核心部分,它決定著產品的收率,對生產成本有著重要影響。儘管如此,在早期因其複雜性而阻礙了對它的系統研究。直到20世紀中葉,在單元操作和傳遞過程研究成果的基礎上,在各種反應過程中,如氧化、還原、硝化、磺化等發現了若干具有共性的問題,如反應器內的返混、反應相內傳質和傳熱、反應相外傳質和傳熱、反應器的穩定性等。對於這些問題的研究,以及它們對反應動力學的各種效應的研究,構成了一個新的學科分支即化學反應工程,從而使化學工程的內容和方法得到了充實和發展。

傳遞過程

是單元操作和反應工程的共同基礎。在各種單元操作設備和反應裝置中進行的物理過程不外乎三種傳遞:動量傳遞、熱量傳遞和質量傳遞。例如,以動量傳遞為基礎的流體輸送、反應器中的氣流分布;以熱量傳遞為基礎的換熱操作,聚合釜中聚合熱的移出;以質量傳遞為基礎的吸收操作,反應物和產物在催化劑內部的擴散等。有些過程有兩種或兩種以上的傳遞現象同時存在,如氣體增減濕等。作為化學工程的學科分支,傳遞過程著重研究上述三種傳遞的速率及相互關係,連貫起一些本質類同但表現形式各異的現象。

化工熱力學

是單元操作和反應工程的理論基礎,研究傳遞過程的方向和極限,提供過程分析和設計所需的有關基礎數據。因此,化學工程的學科分支也可以分兩個層次:單元操作和反應工程較多地直接面向工業實際,傳遞過程和化工熱力學較多地從基礎研究角度,支持前兩個分支。通過這兩個層次使理論和實際得以密切結合。

其他問題

隨著生產規模的擴大和資源、能源的大量耗用,使得早先並不顯得很重要的問題逐漸突出起來。例如能量利用問題,設計和操作最佳化問題,在大型生產中都十分重要。由於化工過程中,各個過程單元相互影響,相互制約,因此很有必要將化工過程看作一個綜合系統,並建立起整體最佳化的概念。於是系統工程這一學科在化學工程中得到了迅速的發展,也取得了明顯的效果,形成了化工系統工程。它是系統工程方法與單元操作和化學反應工程這兩個學科分支相結合的產物。為了保持操作的合理和最佳化,過程動態特性和控制方法也是化學工程的重要內容。

發展方向

化學工程面臨著新的挑戰和新的課題,解決這些新課題的過程,必然使化學工程學科得到發展。它的研究範圍和套用前景已遠遠越過了它原有的含義。
化學工程正向兩個方向發展:一方面隨著學科的成熟,不斷向學科的深度發展;另一方面是不斷向新的領域滲透,研究和解決新領域中的新問題。
可持續發展在當今社會顯得越來越重要,因此化學工業生產中也要遵循這個指導性思想,採用選擇性高的原材料,節能減排,利用高新化學催化劑,最大程度的減少污染物排放,不斷增高有效產物純度,在資源有限的前提下,保護生態環境,維護現有的生態平衡。綠色化學在整個化學工業的發展中,有著實質性的意義,高新技術性產物催化劑的使用能改變現有產業結構和傳統的生產過程,加速化學工業發展。

相關詞條

熱門詞條

聯絡我們