GPS衛星導航系統

GPS衛星導航系統,經近10年我國測繪等部門的使用表明,以全天候、高精度、自動化、高效益等顯著特點,贏得廣大測繪工作者的信賴,並成功地套用於大地測量、工程測量、航空攝影測量、運載工具導航和管制、地殼運動監測、工程變形監測、資源勘察、地球動力學等多種學科,從而給測繪領域帶來一場深刻的技術革命。

基本介紹

  • 中文名:GPS衛星導航系統
  • 特點:全天候、高精度、自動化
  • 內容:大地測量、航空攝影測量
  • 範圍:測繪領域
-特點,發展,發展歷程,原理,定位原理,GPS構成,空間部分,地面控制系統,用戶設備部分,

-特點

1、全球,全天候工作:
能為用戶提供連續,實時的三維位置,三維速度和精密時間。不受天氣的影響。
2、定位精度高:
單機定位精度優於10米,採用差分定位,精度可達厘米級和毫米級。
3、功能多,套用廣:
隨著人們對GPS認識的加深,GPS不僅在測量導航,測速,測時等方面得到更廣泛的套用,而且其套用領域不斷擴大。

發展

在衛星定位系統出現之前,遠程導航與定位主要用無線導航系統。
羅蘭--C:工作在100KHZ,由三個地面導航台組成,導航工作區域2000KM,一般精度200-300M。
Omega(奧米茄):工作在十幾千赫。由八個地面導航台組成,可覆蓋全球。精度幾英里。
多卜勒系統:利用多卜勒頻移原理,通過測量其頻移得到運動物參數(地速和偏流角),推算出飛行器位置,屬自備式航位推算系統。誤差隨航程增加而累加。
缺點:覆蓋的工作區域小;電波傳播受大氣影響;定位精度不高
2、衛星定位系統
最早的衛星定位系統是美國的子午儀系統(Transit),1958年研製,64年正式投入使用。由於該系統衛星數目較小(5-6顆),運行高度較低(平均1000KM),從地面站觀測到衛星的時間隔較長(平均1.5h),因而它無法提供連續的實時三維導航,而且精度較低。為滿足軍事部門和民用部門對連續實時和三維導航的迫切要求。1973年美國國防部制定了GPS計畫。

發展歷程

GPS實施計畫共分三個階段:
第一階段為方案論證和初步設計階段。從1973年到1979年,共發射了4顆試驗衛星。研製了地面接收機及建立地面跟蹤網。
第二階段為全面研製和試驗階段。從1979年到1984年,又陸續發射了7顆試驗衛星,研製了各種用途接收機。實驗表明,GPS定位精度遠遠超過設計標準。
第三階段為實用組網階段。1989年2月4日第一顆GPS工作衛星發射成功,表明GPS系統進入工程建設階段。1993年底實用的GPS網即(21+3)GPS星座已經建成,今後將根據計畫更換失效的衛星。

原理

1、GPS系統的組成
GPS由三個獨立的部分組成:
空間部分:21顆工作衛星,3顆備用衛星。
地面支撐系統:1個主控站,3個注入站,5個監測站。
用戶設備部分:接收GPS衛星發射信號,以獲得必要的導航和定位信息,經數據處理,完成導航和定位工作。GPS接收機硬體一般由主機、天線和電源組成。

定位原理

GPS定位的基本原理是根據高速運動的衛星瞬間位置作為已知的起算數據,採用空間距離後方交會的方法,確定待測點的位置。如圖所示,假設t時刻在地面待測點上安置GPS接收機,可以測定GPS信號到達接收機的時間△t,再加上接收機所接收到的衛星星曆等其它數據可以確定以下四個方程式:
上述四個方程式中待測點坐標x、y、z和Vto為未知參數,其中di=c△ti(i=1、2、3、4)。
di(i=1、2、3、4)分別為衛星1、衛星2、衛星3、衛星4到接收機之間的距離。
△ti(i=1、2、3、4)分別為衛星1、衛星2、衛星3、衛星4的信號到達接收機所經歷的時間。
c為GPS信號的傳播速度(即光速)。
四個方程式中各個參數意義如下:
x、y、z為待測點坐標的空間直角坐標。
xi、yi、zi(i=1、2、3、4)分別為衛星1、衛星2、衛星3、衛星4在t時刻的空間直角坐標,
可由衛星導航電文求得。
Vti(i=1、2、3、4)分別為衛星1、衛星2、衛星3、衛星4的衛星鐘的鐘差,由衛星星曆提供。
Vto為接收機的鐘差。
由以上四個方程即可解算出待測點的坐標x、y、z和接收機的鐘差Vto。
DGPS原理
目前GPS系統提供的定位精度是優於10米,而為得到更高的定位精度,我們通常採用差分GPS技術:將一台GPS接收機安置在基準站上進行觀測。根據基準站已知精密坐標,計算出基準站到衛星的距離改正數,並由基準站實時將這一數據傳送出去。用戶接收機在進行GPS觀測的同時,也接收到基準站發出的改正數,並對其定位結果進行改正,從而提高定位精度。差分GPS分為兩大類:偽距差分和載波相位差分。
1.偽距差分原理
這是套用最廣的一種差分。在基準站上,觀測所有衛星,根據基準站已知坐標和各衛星的坐標,求出每顆衛星每一時刻到基準站的真實距離。再與測得的偽距比較,得出偽距改正數,將其傳輸至用戶接收機,提高定位精度。這種差分,能得到米級定位精度,如沿海廣泛使用的“信標差分”。
2.載波相位差分原理
載波相位差分技術又稱RTK(RealTimeKinematic)技術,是實時處理兩個測站載波相位觀測量的差分方法。即是將基準站採集的載波相位發給用戶接收機,進行求差解算坐標。載波相位差分可使定位精度達到厘米級。大量套用於動態需要高精度位置的領域。

GPS構成

空間部分

GPS的空間部分是由21顆工作衛星組成,它位於距地表20 200km的上空,均勻分布在6 個軌道面上(每個軌道面4 顆) ,軌道傾角為55°。此外,還有3 顆有源備份衛星在軌運行。衛星的分布使得在全球任何地方、任何時間都可觀測到4 顆以上的衛星,並能在衛星中預存的導航信息。GPS的衛星因為大氣摩擦等問題,隨著時間的推移,導航精度會逐漸降低。

地面控制系統

地面控制系統由監測站(Monitor Station)、主控制站(Master Monitor Station)、地面天線(Ground Antenna)所組成,主控制站位於美國科羅拉多州春田市(Colorado Spring)。地面控制站負責收集由衛星傳回之訊息,並計算衛星星曆、相對距離,大氣校正等數據。

用戶設備部分

用戶設備部分即GPS 信號接收機。其主要功能是能夠捕獲到按一定衛星截止角所選擇的待測衛星,並跟蹤這些衛星的運行。當接收機捕獲到跟蹤的衛星信號後,就可測量出接收天線至衛星的偽距離和距離的變化率,解調出衛星軌道參數等數據。根據這些數據,接收機中的微處理計算機就可按定位解算方法進行定位計算,計算出用戶所在地理位置的經緯度、高度、速度、時間等信息。接收機硬體和機內軟體以及GPS 數據的後處理軟體包構成完整的GPS 用戶設備。GPS 接收機的結構分為天線單元和接收單元兩部分。接收機一般採用機內和機外兩種直流電源。設定機內電源的目的在於更換外電源時不中斷連續觀測。在用機外電源時機內電池自動充電。關機後,機內電池為RAM存儲器供電,以防止數據丟失。目前各種類型的接受機體積越來越小,重量越來越輕,便於野外觀測使用。其次則為使用者接收器,現有單頻與雙頻兩種,但由於價格因素,一般使用者所購買的多為單頻接收器。

相關詞條

熱門詞條

聯絡我們