磁流體動力發電機

磁流體動力發電機,將機械能轉變成電能的電機。通常由汽輪機、水輪機或內燃機驅動。小型發電機也有用風車或其他機械經齒輪或皮帶驅動的。

基本介紹

  • 中文名:磁流體動力發電機
  • 外文名:Magnetohydrodynamic generator
磁流體發電,概述,定義,發電技術,發電流程,磁流體發電機,基本信息,原理,磁流體動力發電機,

磁流體發電

磁流體發電(magnetohydrodynamic power generation)過流動的導電流體與磁場相互作用而產生電能。磁流體發電技術就是用燃料石油天然氣、燃煤、核能等)直接加熱成易於電離的氣體,使之在2000℃的高溫下電離成導電的離子流,然後讓其在磁場中高速流動時,切割磁力線,產生感應電動勢,即由熱能直接轉換成電流,由於無需經過機械轉換環節,所以稱之為"直接發電",其燃料利用率得到顯著提高,這種技術也稱為"電漿發電技術"。

概述

定義

磁流體發電是一種新型的高效發電方式,其定義為當帶有
等離子狀態,是指物質原子內的電子在高溫下脫離原子核的吸引,使物質呈為正負帶電粒子狀態存在。
磁流體的電漿橫切穿過磁場時,按電磁感應定律,電漿的正負粒子在磁場的作用下分離,而聚集在與磁力線平等的兩個面上,由於電荷的聚集,從而產生電勢。在磁流體流經的通道上安裝電極和外部負荷連線時,則可發電。
為使高溫氣體有足夠的電導率,需在高溫和高速下,加入總量1%左右的易電離物質——“種子”,一般為碳酸鉀,以利用非平衡電離原理來提高電離度。用裂變反應堆作熱源時,工作介質大多是惰性氣體(例如氦),並以銫作為種子物質。由於受到反應堆固體元件材料的限制,工作介質的溫度遠不能使其達到電離狀態。為了提高電導率,通常採取非平衡電離效應(例如用高頻電場促使電離,這時電子的溫度高於離子和中性粒子的溫度)。此外,工作介質也可為液態金屬和氣體或液態金屬和其蒸氣的混合物。

發電技術

燃煤磁流體發電技術--亦稱為電漿發電,就是磁流體發電的典型套用,燃燒煤而得到的2.6×106℃以上的高溫等離子氣體並以高速流過強磁場時,氣體中的電子受磁力作用,沿著與磁力線垂直的方向流向電極,發出直流電,經直流逆變為交流送入交流電網。
磁流體發電本身的效率僅20%左右,但由於其排煙溫度很高,從磁流體排出的氣體可送往一般鍋爐繼續燃燒成蒸汽,驅動汽輪機發電,組成高效的聯合循環發電,總的熱效率可達50%~60%,是目前正在開發中的高效發電技術中最高的。同樣,它可有效地脫硫,有效地控制NOx的產生,也是一種低污染的煤氣化聯合循環發電技術。

發電流程

在磁流體發電技術中,高溫陶瓷不僅關係到在2000~3000K磁流體溫度能否正常工作,且涉及通道的壽命,亦即燃煤磁流體發電系統能否正常工作的關鍵,目前高溫陶瓷的耐受溫度最高已可達到3090K。
磁流體發電比一般的火力發電效率高得多,但在相當長一段時間內它的研製進展不快,其原因在於伴隨它的優點而產生了一大堆技術難題。磁流體發電機中,運行的是溫度在三、四千度的導電流體,它們是高溫下電離的氣體。為進行有效的電力生產,電離了的氣體導電性能還不夠,因此,還要在其中加入鉀、銫等金屬離子。但是,當這種含有金屬離子的氣流,高速通過強磁場中的發電通道,達到電極時,電極也隨之遭到腐蝕。電極的迅速腐蝕是磁流體發電機面臨的最大難題。另外,磁流體發電機需要一個強大的磁場,人們都認為,真正用於生產規模的發電機必須使用超導磁體來產生高強度的磁場,這當然也帶來技術和設備上的難題。最近幾年,科學家在導電流體的選用上有了新的進展,發明了用低熔點的金屬(如鈉、鉀等)作導電流體,在液態金屬中加進易揮發的流體(如甲苯、乙烷等)來推動液態金屬的流動,巧妙地避開了工程技術上一些難題,製造電極的材料和燃料的研製方面也有了新進展。但想一下子省錢省力地解決磁流體發電中技術、材料等方面的所有難題是不現實的。隨著新的導電流體的套用,技術難題逐步解決,磁流體發電的前景還是樂觀的。在美國,磁流體發電機的容量已超過32000千瓦;日本、德國、波蘭等許多國家都在研製碘流體發電機。我國也已研製出幾台不同形式的磁流體發電機。

磁流體發電機

磁流體發電機,又叫等離子發電機,是根據霍爾效應,用導電流體,例如空氣或液體,與磁場相對運動而發電的一種設備。

基本信息

磁流體發電,是將帶電的流體(離子氣體或液體)以極高的速度噴射到磁場中去,利用磁場對帶電的流體產生的作用,從而發出電來。
最簡單的開式磁流體發電機由燃燒室、發電通道和磁體組成。工作過程是在化石燃料燃燒後產生的高溫氣體中,加入易電離的鉀鹽或鈉鹽,使其部分電離後,經噴管加速產生高達攝氏3000度、速度達到1000米/秒的高溫高速導電氣體,最後產生電流。

原理

磁流體發電中的帶電流體,它們是通過加熱燃料、惰性氣體、鹼金屬蒸氣而得到的。在幾千攝氏度的高溫下,這些物質中的原子和電子的運動都很劇烈,有些電子甚至可以脫離原子核的束縛,發生電離,結果,這些物質變成自由電子、失去電子的離子以及原子核的混合物,這就是電漿,電漿整體不顯電性。將電漿以超音速的速度噴射到一個加有強磁場的管道裡面,電漿中帶有正、負電荷的高速粒子,在磁場中受到洛倫茲力的作用,分別向兩極板偏移,於是正負電荷累積在兩極板上並在兩極之間產生電壓,用導線將電壓接入電路中就可以使用了。
磁流體發電的另一個好處是產生的環境污染少。利用火力發電,燃燒燃料產生的廢氣里含有大量的二氧化硫,這是造成空氣污染的一個重要原因。利用磁流體發電,不僅使燃料在高溫下燃燒得更加充分,它使用的一些添加材料還可以和硫化合,生成硫酸鉀,並被回收利用,這就避免了直接把硫排放到空氣中,對環境造成污染。
利用磁流體發電,只要加快帶電流體的噴射速度,增加磁場強度,就能提高發電機的功率。人們使用高能量的燃料,再配上快速啟動裝置,就可以使發電機功率達到1000萬kW,這就滿足了一些需要大功率電力的場合。目前,中國,美國、印度、澳大利亞以及歐洲共同體等,都積極致力於這方面的研究。
磁流體發電機產生電動勢,輸出電功率的原理如上圖。
1959年,美國阿夫柯公司建造了第一台磁流體發電機,功率為115kW。此後各國均有研究製造,美蘇聯合研製的磁流體發電機U-25B在1978年8月進行了第四次試驗,氣體-電漿流量為2~4kg/s,溫度為2950K,磁場為5T,輸出功率1300kW,共運行了50小時。目前許多國家正在研製百萬千瓦的利用超導磁體的磁流體發電機。

磁流體動力發電機

發電機分為直流發電機和交流發電機兩大類。後者又可分為同步發電機和異步發電機兩種。現代發電站中最常用的是同步發電機。這種發電機的特點是由直流電流勵磁,既能提供有功功率,也能提供無功功率,可滿足各種負載的需要。異步發電機由於沒有獨立的勵磁繞組,其結構簡單,操作方便,但是不能向負載提供無功功率,而且還需要從所接電網中汲取滯後的磁化電流。因此異步發電機運行時必須與其他同步電機並聯,或者並接相當數量的電容器。這限制了異步發電機的套用範圍,只能較多地套用於小型自動化水電站。城市電車、電解、電化學等行業所用的直流電源,在20世紀50年代以前多採用直流發電機。但是直流發電機有換向器,結構複雜,製造費時,價格較貴,且易出故障,維護困難,效率也不如交流發電機。故大功率可控整流器問世以來,有利用交流電源經半導體整流獲得直流電以取代直流發電機的趨勢。
同步發電機按所用原動機的不同分為汽輪發電機、水輪發電機和柴油發電機3種。它們結構上的共同點是除了小型電機有用永久磁鐵產生磁場以外,一般的磁場都是由通直流電的勵磁線圈產生,而且勵磁線圈放在轉子上,電樞繞組放在定子上。因為勵磁線圈的電壓較低,功率較小,又只有兩個出線頭,容易通過滑環引出;而電樞繞組電壓較高,功率又大,多用三相繞組,有3個或4個引出頭,放在定子上比較方便。發電機的電樞(定子)鐵心用矽鋼片疊成,以減少鐵耗。轉子鐵心由於通過的磁通不變,可以用整體的鋼塊製成。在大型電機中,由於轉子承受著強大的離心力,製造轉子的材料必須選用優質鋼材。

相關詞條

熱門詞條

聯絡我們