工控感測器

能感受規定的被測量並按照一定的規律轉換成可用輸出信號的器件或裝置。感測器是一種物理裝置或生物器官,能夠探測、感受外界的信號、物理條件(如光、熱、濕度)或化學組成(如煙霧),並將探知的信息傳遞給其他裝置或器官。

基本介紹

  • 中文名:工控感測器
  • 簡介:工控指的是工業自動化控
  • 感測器的作用:人們為了從外界獲取信息,必
  • 分類:物理類,基於力、熱、光、
簡介,感測器的作用,敏感元件的分類,感測器的分類,感測器靜態特性,感測器動態特性,感測器的線性度,感測器的靈敏度,感測器的解析度,24GHz雷達感測器,電阻式感測器,

簡介

工控指的是工業自動化控制,主要利用電子電氣、機械、軟體組合實現。即是工業控制(Factory control),或者是工廠自動化控制(Factory Automation control)。主要是指使用計算機技術,微電子技術,電氣手段,使工廠的生產和製造過程更加自動化、效率化、精確化,並具有可控性及可視性。
中文名稱:感測器 英文名稱:sensor;measuring element;transducer 定義1:能感受規定的被測量並按照一定的規律轉換成可用輸出信號的器件或裝置。 所屬學科:機械工程(一級學科);感測器(二級學科);感測器一般名詞(三級學科) 定義2:接受物理或化學變數(輸入變數)形式的信息,並按一定規律將其轉換成同種或別種性質的輸出信號的裝置。 所屬學科:煤炭科技(一級學科);礦山電氣工程(二級學科);煤礦監測與控制(三級學科)
感測器是一種物理裝置或生物器官,能夠探測、感受外界的信號、物理條件(如光、熱、濕度)或化學組成(如煙霧),並將探知的信息傳遞給其他裝置或器官。
英文名稱:transducer / sensor
國家標準GB7665-87對感測器下的定義是:“能感受規定的被測量並按照一定的規律轉換成可用信號的器件或裝置,通常由敏感元件和轉換元件組成”。感測器是一種檢測裝置,能感受到被測量的信息,並能將檢測感受到的信息,按一定規律變換成為電信號或其他所需形式的信息輸出,以滿足信息的傳輸、處理、存儲、顯示、記錄和控制等要求。它是實現自動檢測和自動控制的首要環節。
“感測器”在新韋式大詞典中定義為:
-“從一個系統接受功率,通常以另一種形式將功率送到第二個系統中的器件”。
根據這個定義,感測器的作用是將一種能量轉換成另一種能量形式,所以不少學者也用“換能器-Transducer”來稱謂“感測器-Sensor”。

感測器的作用

人們為了從外界獲取信息,必須藉助於感覺器官。而單靠人們自身的感覺器官,在研究自然現象和規律以及生產活動中它們的功能就遠遠不夠了。為適應這種情況,就需要感測器。因此可以說,感測器是人類五官的延長,又稱之為電五官。
新技術革命的到來,世界開始進入資訊時代。在利用信息的過程中,首先要解決的就是要獲取準確可靠的信息,而感測器是獲取自然和生產領域中信息的主要途徑與手段。
在現代工業生產尤其是自動化生產過程中,要用各種感測器來監視和控制生產過程中的各個參數,使設備工作在正常狀態或最佳狀態,並使產品達到最好的質量。因此可以說,沒有眾多的優良的感測器,現代化生產也就失去了基礎。
在基礎學科研究中,感測器更具有突出的地位。現代科學技術的發展,進入了許多新領域:例如在巨觀上要觀察上千光年的茫茫宇宙,微觀上要觀察小到 cm的粒子世界,縱向上要觀察長達數十萬年的天體演化,短到 s的瞬間反應。此外,還出現了對深化物質認識、開拓新能源、新材料等具有重要作用的各種極端技術研究,如超高溫、超低溫、超高壓、超高真空、超強磁場、超弱磁碭等等。顯然,要獲取大量人類感官無法直接獲取的信息,沒有相適應的感測器是不可能的。許多基礎科學研究的障礙,首先就在於對象信息的獲取存在困難,而一些新機理和高靈敏度的檢測感測器的出現,往往會導致該領域內的突破。一些感測器的發展,往往是一些邊緣學科開發的先驅。
感測器早已滲透到諸如工業生產、宇宙開發、海洋探測、環境保護、資源調查、醫學診斷、生物工程、甚至文物保護等等極其之泛的領域。可以毫不誇張地說,從茫茫的太空,到浩瀚的海洋,以至各種複雜的工程系統,幾乎每一個現代化項目,都離不開各種各樣的感測器。
由此可見,感測器技術在發展經濟、推動社會進步方面的重要作用,是十分明顯的。世界各國都十分重視這一領域的發展。相信不久的將來,感測器技術將會出現一個飛躍,達到與其重要地位相稱的新水平。

敏感元件的分類

①物理類,基於力、熱、光、電、磁和聲等物理效應。②化學類,基於化學反應的原理。③生物類,基於酶、抗體、和激素等分子識別功能。通常據其基本感知功能可分為熱敏元件光敏元件氣敏元件力敏元件磁敏元件濕敏元件、聲敏元件、放射線敏感元件、色敏元件和味敏元件等十大類(還有人曾將敏感元件分46類)。

感測器的分類

可以用不同的觀點對感測器進行分類:它們的轉換原理(感測器工作的基本物理或化學效應);它們的用途;它們的輸出信號類型以及製作它們的材料和工藝等。
根據感測器工作原理,可分為物理感測器化學感測器二大類 :
感測器工作原理的分類物理感測器套用的是物理效應,諸如壓電效應磁致伸縮現象,離化、極化、熱電、光電、磁電等效應。被測信號量的微小變化都將轉換成電信號。
化學感測器包括那些以化學吸附、電化學反應等現象為因果關係的感測器,被測信號量的微小變化也將轉換成電信號。
有些感測器既不能劃分到物理類,也不能劃分為化學類。大多數感測器是以物理原理為基礎運作的。化學感測器技術問題較多,例如可靠性問題,規模生產的可能性,價格問題等,解決了這類難題,化學感測器的套用將會有巨大增長。
常見感測器的套用領域和工作原理列於下表。
1.按照其用途,感測器可分類為:
壓力敏和力敏感測器 位置感測器
液面感測器 能耗感測器
速度感測器 加速度感測器
射線輻射感測器 熱敏感測器
24GHz雷達感測器
2.按照其原理,感測器可分類為:
振動感測器 濕敏感測器
磁敏感測器 氣敏感測器
真空度感測器 生物感測器等。
以其輸出信號為標準可將感測器分為:
模擬感測器——將被測量的非電學量轉換成模擬電信號。
數字感測器——將被測量的非電學量轉換成數字輸出信號(包括直接和間接轉換)。
膺數字感測器——將被測量的信號量轉換成頻率信號或短周期信號的輸出(包括直接或間接轉換)。
開關感測器——當一個被測量的信號達到某個特定的閾值時,感測器相應地輸出一個設定的低電平或高電平信號。
在外界因素的作用下,所有材料都會作出相應的、具有特徵性的反應。它們中的那些對外界作用最敏感的材料,即那些具有功能特性的材料,被用來製作感測器的敏感元件。從所套用的材料觀點出發可將感測器分成下列幾類:
(1)按照其所用材料的類別分?
金屬? 聚合物? 陶瓷? 混合物?
(2)按材料的物理性質分? ? 導體? 絕緣體? 半導體? 磁性材料?
(3)按材料的晶體結構分?
單晶? 多晶? 非晶材料?
與採用新材料緊密相關的感測器開發工作,可以歸納為下述三個方向:?
(1)在已知的材料中探索新的現象、效應和反應,然後使它們能在感測器技術中得到實際使用。?
(2)探索新的材料,套用那些已知的現象、效應和反應來改進感測器技術。?
(3)在研究新型材料的基礎上探索新現象、新效應和反應,並在感測器技術中加以具體實施。?
現代感測器製造業的進展取決於用於感測器技術的新材料和敏感元件的開發強度。感測器開發的基本趨勢是和半導體以及介質材料的套用密切關聯的。表1.2中給出了一些可用於感測器技術的、能夠轉換能量形式的材料。?
按照其製造工藝,可以將感測器區分為:
集成感測器?薄膜感測器?厚膜感測器?陶瓷感測器
集成感測器是用標準的生產矽基半導體積體電路的工藝技術製造的。通常還將用於初步處理被測信號的部分電路也集成在同一晶片上。?
薄膜感測器則是通過沉積在介質襯底(基板)上的,相應敏感材料的薄膜形成的。使用混合工藝時,同樣可將部分電路製造在此基板上。?
厚膜感測器是利用相應材料的漿料,塗覆在陶瓷基片上製成的,基片通常是Al2O3製成的,然後進行熱處理,使厚膜成形。
陶瓷感測器採用標準的陶瓷工藝或其某種變種工藝(溶膠-凝膠等)生產。?
完成適當的預備性操作之後,已成形的元件在高溫中進行燒結。厚膜和陶瓷感測器這二種工藝之間有許多共同特性,在某些方面,可以認為厚膜工藝是陶瓷工藝的一種變型。?
每種工藝技術都有自己的優點和不足。由於研究、開發和生產所需的資本投入較低,以及感測器參數的高穩定性等原因,採用陶瓷和厚膜感測器比較合理。

感測器靜態特性

感測器的靜態特性是指對靜態的輸入信號,感測器的輸出量與輸入量之間所具有相互關係。因為這時輸入量和輸出量都和時間無關,所以它們之間的關係,即感測器的靜態特性可用一個不含時間變數的代數方程,或以輸入量作橫坐標,把與其對應的輸出量作縱坐標而畫出的特性曲線來描述。表征感測器靜態特性的主要參數有:線性度、靈敏度、遲滯、重複性、漂移等。
(1)線性度:指感測器輸出量與輸入量之間的實際關係曲線偏離擬合直線的程度。定義為在全量程範圍內實際特性曲線與擬合直線之間的最大偏差值與滿量程輸出值之比。
(2)靈敏度:靈敏度是感測器靜態特性的一個重要指標。其定義為輸出量的增量與引起該增量的相應輸入量增量之比。用S表示靈敏度。
(3)遲滯:感測器在輸入量由小到大(正行程)及輸入量由大到小(反行程)變化期間其輸入輸出特性曲線不重合的現象成為遲滯。對於同一大小的輸入信號,感測器的正反行程輸出信號大小不相等,這個差值稱為遲滯差值。
(4)重複性:重複性是指感測器在輸入量按同一方向作全量程連續多次變化時,所得特性曲線不一致的程度。
(5)漂移:感測器的漂移是指在輸入量不變的情況下,感測器輸出量隨著時間變化,此現象稱為漂移。產生漂移的原因有兩個方面:一是感測器自身結構參數;二是周圍環境(如溫度、濕度等)。

感測器動態特性

所謂動態特性,是指感測器在輸入變化時,它的輸出的特性。在實際工作中,感測器的動態特性常用它對某些標準輸入信號的回響來表示。這是因為感測器對標準輸入信號的回響容易用實驗方法求得,並且它對標準輸入信號的回響與它對任意輸入信號的回響之間存在一定的關係,往往知道了前者就能推定後者。最常用的標準輸入信號有階躍信號和正弦信號兩種,所以感測器的動態特性也常用階躍回響和頻率回響來表示。

感測器的線性度

通常情況下,感測器的實際靜態特性輸出是條曲線而非直線。在實際工作中,為使儀表具有均勻刻度的讀數,常用一條擬合直線近似地代表實際的特性曲線、線性度(非線性誤差)就是這個近似程度的一個性能指標。
擬合直線的選取有多種方法。如將零輸入和滿量程輸出點相連的理論直線作為擬合直線;或將與特性曲線上各點偏差的平方和為最小的理論直線作為擬合直線,此擬合直線稱為最小二乘法擬合直線。

感測器的靈敏度

靈敏度是指感測器在穩態工作情況下輸出量變化△y對輸入量變化△x的比值。
它是輸出一輸入特性曲線的斜率。如果感測器的輸出和輸入之間顯線性關係,則靈敏度S是一個常數。否則,它將隨輸入量的變化而變化。
靈敏度的量綱是輸出、輸入量的量綱之比。例如,某位移感測器,在位移變化1mm時,輸出電壓變化為200mV,則其靈敏度應表示為200mV/mm。
當感測器的輸出、輸入量的量綱相同時,靈敏度可理解為放大倍數。
提高靈敏度,可得到較高的測量精度。但靈敏度愈高,測量範圍愈窄,穩定性也往往愈差。

感測器的解析度

解析度是指感測器可能感受到的被測量的最小變化的能力。也就是說,如果輸入量從某一非零值緩慢地變化。當輸入變化值未超過某一數值時,感測器的輸出不會發生變化,即感測器對此輸入量的變化是分辨不出來的。只有當輸入量的變化超過解析度時,其輸出才會發生變化。
通常感測器在滿量程範圍內各點的解析度並不相同,因此常用滿量程中能使輸出量產生階躍變化的輸入量中的最大變化值作為衡量解析度的指標。上述指標若用滿量程的百分比表示,則稱為解析度。解析度與感測器的穩定性有負相相關性。

24GHz雷達感測器

24GHz雷達感測器通過發射與接收頻率為24.125GHz左右的微波來感應物體的
24GHZ雷達感測器24GHZ雷達感測器
24GHZ雷達感測器
存在,測量物體的運動速度,靜止距離,物體所處角度等,採用平面微帶技術,具有體積小.集成化程度高.感應靈敏,無需接觸等特點。
24GHz雷達感測器是一種可以將微波回波信號轉換為一種電信號的裝換裝置,是雷達測速儀,水位計,汽車ACC輔助巡航系統,自動門感應器等的核心晶片。

電阻式感測器

電阻式感測器是將被測量,如位移、形變、力、加速度、濕度、溫度等這些物理量轉換式成電阻值這樣的一種器件。主要有電阻應變式、壓阻式、熱電阻、熱敏、氣敏、濕敏等電阻式感測器件。
稱重感測器
引稱重感測器是一種能夠將重力轉變為電信號的力--電轉換裝置,是電子衡器的一個關鍵部件。
能夠實現力--電轉換的感測器有多種,常見的有電阻應變式、電磁力式和電容式等。電磁力式主要用於電子天平,電容式用於部分電子吊秤,而絕大多數衡器產品所用的還是電阻應變式稱重感測器。電阻應變式稱重感測器結構較簡單,準確度高,適用面廣,且能夠在相對比較差的環境下使用。因此電阻應變式稱重感測器在衡器中得到了廣泛地運用。

相關詞條

熱門詞條

聯絡我們