宇稱守恆

宇稱守恆

宇稱守恆,是指物理學關於對稱性探索的一個重要進展是建立諾特定理,定理指出,如果運動定律在某一變換下具有不變性,必相應地存在一條守恆定律。簡言之,物理定律的一種對稱性,對應地存在一條守恆定律。上述經典物理範圍內的對稱性和守恆定律相聯繫的諾特定理後來經過推廣,在量子力學範圍內也成立。

量子力學和粒子物理學中,又引入了一些新的內部自由度,認識了一些新的抽象空間的對稱性以及與之相應的守恆定律。

基本介紹

  • 中文名:宇稱守恆
  • 學科物理
  • 性質:運動定律在某一變換下具有不變性
  • 提出時間:1926年
概述,提出,諾特定理,宇稱不守恆,

概述

宇稱守恆是指在任何情況下,任何粒子的鏡象與該粒子除自旋方向外,具有完全相同的性質。
該定律於1926年提出,在強力、電磁力萬有引力中相繼得到證明,但在1956年被證實在弱相互作用中不成立,此結論由美籍華人科學家李政道楊振寧提出,並因此獲得諾貝爾獎(詳見宇稱不守恆定律)。
該定律表明:如果描述系統初態的波函式具有偶(奇)宇稱,則描述終態的波函式也具有偶(奇)宇稱。

提出

1926年提出,並相繼在強力、電磁力萬有引力得到證實。
1956年被吳建雄證明在弱相互作用中不適用。具體推證見參考資料2。
人們腦中有一種事事追求完美的觀念,所以是科學界希望證明一定程度上世界是完美的,所以有了此定律。
本定律是諾特定理的推廣。

諾特定理

諾特定理是本定律的基礎。
諾特定理是說,作用量的每一種對稱性都對應一個守恆定律,有一個守恆量。對稱和守恆這兩個概念是緊密地聯繫在一起的。
由德國女數學家艾米·諾特於1918年發現。
參見諾特定理

宇稱不守恆

物理定律的守恆性具有極其重要的意義,有了這些守恆定律,自然界的變化就呈現出一種簡單、和諧、對稱的關係,也就變得易於理解了。所以,科學家在科學研究中,對守恆定律有一種特殊的熱情和敏感,一旦某一個守恆定律被公認以後,人們是極不情願把它推翻的。因此,當我們明白了各種對稱性與物理量守恆定律的對應關係後,也就明白了對稱性原理的重要意義,我們無法構想:一個沒有對稱性的世界,物理定律也變動不定,那該是一個多么混亂、令人手足無措的世界!
諾特定理將物理學中“對稱”的重要性推到了前所未有的高度。不過,物理學家們似乎還不滿足,1926年,有人提出了宇稱守恆定律,把對稱和守恆定律的關係進一步推廣到微觀世界。 這就是一開始為什麼說宇稱的基礎是諾特定理!讓我們先來了解一下“宇稱守恆”的含義。“宇稱”,就是指一個基本粒子與它的“鏡像”粒子完全對稱。人在照鏡子時,鏡中的影像和真實的自己總是具有完全相同的性質——包括容貌、裝扮、表情和動作。同樣,一個基本粒子與它的“鏡像”粒子的所有性質也完全相同,它們的運動規律也完全一致,這就是“宇稱守恆”。
宇稱守恆
假如一個粒子順時針旋轉,它的鏡像粒子從鏡中看起來就是逆時針旋轉,但是這個旋轉的所有定律都是相同的,因此,鏡內境外的粒子是宇稱守恆的。按照諾特定理,與空間反射不變性(所謂空間反射,一般指的是鏡像)對應的就是宇稱守恆。
在某種意義上,我們可以把同一種粒子下的個體粒子理解成彼此互為鏡像的,例如,假設一個電子順時針方向自旋,另一個電子逆時針方向自旋,一個電子就可以把另一個電子當成鏡像中的自己,就像人通過鏡子看自己一樣。由此推斷,根據宇稱守恆理論,所有電子自身環境和鏡像環境中都應該遵循同樣的物理定律,其他粒子的情況也是如此。聽起來,所謂的“宇稱守恆”似乎並沒有什麼特別之處,至少在1926年之前,早已有人提出了牛頓定律具有鏡像對稱性。不過,以前科學家們提出的那些具有鏡像對稱的物理定律大多是巨觀的,而宇稱守恆則是針對組成宇宙間所有物質的最基本的粒子。如果這種物質最基本層面的對稱能夠成立,那么對稱就成為宇宙物質的根本屬性。
事實上,宇稱守恆理論的確在幾乎所有的領域都得到了驗證——只除了弱力。我們知道,現代物理將物質間的相互作用力分為四種:引力、電磁力、強力和弱力。在強力、電磁力和引力作用的環境中,宇稱守恆理論都得到了很好的驗證:正如我們通常認為的那樣,粒子在這三種環境下表現出了絕對的、無條件的對稱。在普通人眼中,對稱是完美世界的保證;在物理學家眼中,宇稱守恆如此合乎科學理想。於是,弱力環境中的宇稱守恆雖然未經驗證,也理所當然地被認為遵循宇稱守恆規律。然而在1956年,兩位美籍華裔物理學家——李政道和楊振寧——大膽地對“完美的對稱世界”提出了挑戰,矛頭直指宇稱守恆定律,這成為上世紀物理學界最震撼的事件之一。引發這次震撼事件的最直接原因,是已讓學者們困惑良久的“θ-τ之謎”,它是宇稱守恆定律繞不過去的坎。
20世紀50年代初,科學家們從宇宙射線里觀察到兩種新的介子(即質量介於質子和電子之間的粒子):θ和τ。這兩種介子的自旋、質量、壽命電荷等完全相同,很多人都認為它們是同一種粒子。但是,它們卻具有不同的衰變模式,θ衰變時會產生兩個π介子,τ則衰變成三個π介子,這說明它們遵循著不同的運動規律。
宇稱守恆
假使τ和θ是不同的粒子,它們怎么會具有一模一樣的質量和壽命呢?而如果承認它們是同一種粒子,二者又怎么會具有完全不一樣的運動規律呢?為了解決這一問題,物理學界曾提出過各種不同的想法,但都沒有成功。物理學家們都小心翼翼地繞開了“宇稱不守恆”這個可能。你能想像,一個電子和另一個電子的運動規律不一樣嗎?或者一個介子和另一個介子的運動規律不一樣嗎?當時的物理學家們可沒這膽量。
1956年,李政道和楊振寧在深入細緻地研究了各種因素之後,大膽地斷言:τ和θ是完全相同的同一種粒子(後來被稱為K介子),但在弱相互作用的環境中,它們的運動規律卻不一定完全相同,通俗地說,這兩個相同的粒子如果互相照鏡子的話,它們的衰變方式在鏡子裡和鏡子外居然不一樣!用科學語言來說,“θ-τ”粒子在弱相互作用下是宇稱不守恆的。
李政道和楊振寧的觀點震動了當時的物理學界,他們在完美的物理學對稱世界撕出了一個缺口!在最初,“θ-τ”粒子只是被作為一個特殊例外,人們還是不願意放棄整體微觀粒子世界的宇稱守恆。此後不久,同為華裔的實驗物理學家吳健雄用一個巧妙的實驗驗證了“宇稱不守恆”,從此,“宇稱不守恆”才真正被承認為一條具有普遍意義的基礎科學原理。
宇稱守恆
吳健雄用兩套實驗裝置觀測鈷60的衰變,她在極低溫(0.01K)下用強磁場把一套裝置中的鈷60原子核自旋方向轉向左旋,把另一套裝置中的鈷60原子核自旋方向轉向右旋,這兩套裝置中的鈷60互為鏡像。實驗結果表明,這兩套裝置中的鈷60放射出來的電子數有很大差異,而且電子放射的方向也不能互相對稱。實驗結果證實了弱相互作用中的宇稱不守恆。
我們可以用一個類似的例子來說明問題。假設有兩輛互為鏡像的汽車,汽車A的司機坐在左前方座位上,油門踏板在他的右腳附近;而汽車B的司機則坐在右前方座位上,油門踏板在他的左腳附近。
現在,汽車A的司機順時針方向開動點火鑰匙,把汽車發動起來,並用右腳踩油門踏板,使得汽車以一定的速度向前駛去;汽車B的司機也做完全一樣的動作,只是左右交換一下——他反時針方向開動點火鑰匙,用左腳踩油門踏板,並且使踏板的傾斜程度與A保持一致。現在,汽車B將會如何運動呢?
也許大多數人會認為,兩輛汽車應該以完全一樣的速度向前行駛。遺憾的是,他們犯了想當然的毛病。吳健雄的實驗證明了,在粒子世界裡,汽車B將以完全不同的速度行駛,方向也未必一致!——粒子世界就是這樣不可思議地展現了宇稱不守恆。
三位華裔物理學家用他們的智慧贏得了巨大的聲譽,1957年,李政道和楊振寧獲得諾貝爾物理學獎,一項科學理論,在發表的第二年就獲得諾貝爾獎是史無前例的。很遺憾的是,用精妙絕倫的實驗證實了宇稱不守恆的吳健雄一直沒能獲獎。
宇稱守恆
不過,究竟為什麼粒子在弱相互作用下會出現宇稱不守恆呢?根本原因至今仍然是個謎。
宇稱不守恆的發現並不是孤立的。在微觀世界裡,基本粒子有三個基本的對稱方式:
1、一個是粒子和反粒子互相對稱,即對於粒子和反粒子,定律是相同的,這被稱為電荷(C)對稱。
2、一個是空間反射對稱,即同一種粒子之間互為鏡像,它們的運動規律是相同的,這叫宇稱(P)。
3、一個是時間反演對稱,即如果我們顛倒粒子的運動方向,粒子的運動是相同的,這被稱為時間(T)對稱。
這就是說,如果用反粒子代替粒子、把左換成右,以及顛倒時間的流向,那么變換後的物理過程仍遵循同樣的物理定律。
但是,自從宇稱守恆定律被李政道和楊振寧打破後,科學家很快又發現,粒子和反粒子的行為並不是完全一樣的!一些科學家進而提出,可能正是由於物理定律存在輕微的不對稱,使粒子的電荷(C)不對稱,導致宇宙大爆炸之初生成的物質比反物質略多了一點點,大部分物質與反物質湮滅了,剩餘的物質才形成了我們今天所認識的世界。
如果物理定律嚴格對稱,宇宙連同我們自身就都不會存在了——宇宙大爆炸之後應當誕生了數量相同的物質和反物質,但正反物質相遇後就會立即湮滅,那么,星系、地球乃至人類就都沒有機會形成了。
接下來,科學家發現連時間本身也不再具有對稱性了!可能大多數人原本就認為時光是不可倒流的。日常生活中,時間之箭永遠只有一個朝向,“逝者如斯”,老人不能變年輕,打碎的花瓶無法復原,過去與未來的界限涇渭分明。
不過,在物理學家眼中,時間卻一直被視為是可逆轉的。比如說一對光子碰撞產生一個電子和一個正電子,而正負電子相遇則同樣產生一對光子,這兩個過程都符合基本物理學定律,在時間上是對稱的。如果用攝像機拍下其中一個過程然後播放,觀看者將不能判斷錄像帶是在正向還是逆向播放——從這個意義上說,時間沒有了方向。
但這個意義並不嚴謹,因為我們不知道前提。即開始之前的環境。但時間沒有方向是真的。過去是已成的事件,現在是正在發生的事件,未來是還沒有發生的事件。時間是這個過程的度量。但不顯示箭頭。
關於時間沒有方向性的論述,我在《變化》中有過論述。大家可以去看看。然而,1998年年末,物理學家們卻首次在微觀世界中發現了違背時間對稱性的事件。歐洲原子能研究中心的科研人員發現,正負K介子在轉換過程中存在時間上的不對稱性:反K介子轉換為K介子的速率要比其逆轉過程——即K介子轉變為反K介子來得要快。至此,粒子世界的物理規律的對稱性全部破碎了,世界從本質上被證明了是不完美的、有缺陷的。
當“宇稱不守恆”在上世紀50年代被提出時,大多數人對“完美和諧”的宇稱守恆定律受到挑戰不以為然。在吳健雄實驗之前,當時著名的理論物理學權威泡利教授甚至說:“我不相信上帝是一個軟弱的左撇子,我已經準備好一筆大賭注,我敢打賭實驗將獲得對稱的結論。”然而,嚴謹的實驗證明,泡利教授的這一次賭打輸了。
近代微生物學之父巴斯德曾經說過:“生命向我們顯示的乃是宇宙不對稱的功能。宇宙是不對稱的,生命受不對稱作用支配。”自然界或許真的不是那么對稱和完美,大自然除了偏愛物質、嫌棄反物質之外,它對左右也有偏好。
自然界的20種胺基酸中,有19種都存在兩種構型,即左旋型和右旋型。在非生物反應產生胺基酸的實驗中,左旋和右旋兩種類型出現的幾率是均等的,但在生命體中,19種胺基酸驚人一致地全部呈現左旋型——除了極少數低級病毒含有右旋型胺基酸。無疑,生命對左旋型有著強烈的偏愛。
也有人提出,生命起源時,胺基酸呈左旋型其實是隨機的,它不過是順應了地球圍繞太陽轉的磁場方向。但大多數科學家卻認為,左旋型和右旋型的不對稱意味著這兩種能量存在著高低。通常認為,左旋型能量較低,也較穩定,穩定則容易形成生命。更令人費解的是,雖然構成生命體的蛋白質胺基酸分子都是左旋型的,但組成核酸的核糖和脫氧核糖分子卻都是右旋型的——儘管天然的糖中左旋和右旋的幾率幾乎相同。看來,上帝對左右真的是有所偏愛,如果事事處處都要達到絕對的平衡對稱,“萬物之靈”的生命就不會產生了。
不管是故意也好,疏忽也罷,上帝或許真的並不是一個絕對對稱的完美主義者。從某種意義上來說,正是不對稱創造了世界。道理其實很簡單。雖然對稱性反映了不同物質形態在運動中的共性,但是,只有對稱性被破壞才能使它們顯示出各自的特性。這正如建築一樣,只有對稱而沒有對稱的破壞,建築物看上去雖然很規則,但同時卻一定會顯得非常單調和呆板。只有基本上對稱但又不完全對稱才能構成美的建築。
大自然正是這樣的建築師。當大自然構造像DNA這樣的大分子時,總是遵循複製的原則,將分子按照對稱的螺旋結構聯接在一起,構成螺旋形結構的空間排列也是基本相同的。但是在複製過程中,對精確對稱性的細微的偏離就會在大分子單位的排列次序上產生新的可能性。因此,對稱性被破壞是事物不斷發展進化、變得豐富多彩的原因。
正如著名的德國哲學家萊布尼茨所說,世界上沒有兩片完全相同的樹葉。仔細觀察樹葉中脈(即樹葉中間的主脈)的細微結構,你會發現就連同一片葉子兩邊葉脈的數量和分布、葉緣缺刻或鋸齒的數目和分布也都是不同的。絕大多數人的面部發育都不對稱,66%的人左耳稍大於右耳,56%的人左眼略大,59%的人右半側臉較大;人的軀幹、四肢也不完全對稱,左肩往往較高,75%的人右側上肢較左側長。
可以說,生物界裡的不對稱是絕對的,而對稱只是相對的。實驗研究證明,這是由於細胞內原生質的不對稱性所引起的。從生物體內蛋白質等物質分子結構可以清楚地看到,它們一般呈不對稱的結構形式。科學研究還發現,不對稱原生質的新陳代謝活動能力,比起左右對稱的化學物至少要快三倍。由此可見,不對稱性對生命的進化有著重要的意義。自然界的發展,正是一個對稱性不斷減少的過程。
其實,不僅在自然界,即使在崇尚完美的人類文明中,絕對的對稱也並不討好。一幅看來近似左右對稱的山水畫,能給人以美的享受。但是如果一幅完全左右對稱的山水畫,呆板而缺少生氣,與充滿活力的自然景觀毫無共同之處,根本無美可言。有時,對對稱性或者平衡性的某種破壞,哪怕是微小破壞,也會帶來不可思議的美妙結果。從這種意義上來說,或許完美並不意味著絕對的對稱,恰恰是對稱的打破帶來了完美。“宇稱不守恆原理”的影響是深遠的。許多人說:“很難想像,假若沒有楊和李等的工作,今天的理論物理會是什麼樣子?!”
物理學上這種不辨過去與未來的特性被稱為時間對稱性。經典物理學定律都假定時間無方向,而且也確實在巨觀世界中通過了檢驗。但近幾十年來,物理學家一直在研究時間對稱性在微觀世界中是否同樣適用。歐洲原子能研究中心的一個小組經過長達三年的研究最近終於獲得了突破。他們的實驗觀測首次證明,至少在中性K介子衰變過程中,時間違背了對稱性。
由來自九個國家近百名研究人員組成的這一小組在實驗中研究了K介子反K介子相互轉換的過程。介子是一種質量比電子大,但比質子與中子小,自旋為整數,參與強相互作用的粒子,按內部量子數可分為π介子、ρ介子和K介子等。
研究人員在實驗中發現,反K介子轉換為K介子的速率要比其時間逆轉過程、即K介子轉變為反K介子來得要快。這是物理學史上首次直接觀測到時間不對稱現象。
現代宇宙理論曾認為,宇宙大爆炸之初應該產生等量物質和反物質,但當今的宇宙卻主要為物質世界所主宰,這一現象一直讓人困惑。歐洲核子中心新實驗證明,反物質轉化為物質的速度要快於其相反過程,因此它為宇宙中物質量為何遠遠超過反物質量提供了部分答案。另外,新成果對物理學基本對稱定律研究也有重要意義。物理學家們一直認為,除了基本物理定律不受時間方向性影響外,物體在空間物理反射的過程以及粒子與反粒子的變換過程也應遵循對稱性。時間、宇稱和電荷守恆定律被認為是支撐現代物理學的基礎之一。
本世紀50年代來,物理學家先後發現一些守恆定律有時並不完全滿足對稱性。美籍華人物理學家楊振寧和李政道曾提出弱相互作用中宇稱不守恆理論並經實驗證實,之後美國人詹姆斯·克羅寧和瓦爾·菲奇又發現K介子衰變過程違背宇稱和電荷聯合對稱法則,他們都因此而獲諾貝爾物理學獎。
宇稱守恆
1999年3月,科學家稱直接觀測證明電荷宇稱定律有誤。美國費米實驗室宣布說,該實驗室以前所未有的精度,基本“確切無疑”地證明中性K介子在衰變過程中直接違背了電荷宇稱聯合對稱法則。這一結果被認為是物質和反物質研究領域的一項重要進展。
物理學理論認為,每一種基本粒子都有其對應的反粒子。譬如說與帶負電的電子相對應,就存在質量相同、攜帶電荷正好相反的正電子。在反物質理論提出後,科學家們一直認為,粒子和反粒子之間在特性上存在對稱,就象人們通過鏡子看自己一樣。這些對稱特性主要包括基本物理定律不受時間方向性影響,以及空間反射下的物理過程以及粒子與反粒子的變換過程遵循對稱,它們分別被稱為時間、宇稱和電荷守恆定律。
1964年,美國物理學家克洛寧和菲奇發現,K介子與其反物質反K介子之間違背宇稱和電荷聯合守恆定律。但兩位物理學家主要通過K介子與反K介子的量子力學波動效應而觀測到其違背電荷宇稱守恆現象,因此被認為是一種間接觀測。
自60年代以來,世界各國物理學家也先後得出一些類似結果,但基本也都屬於間接觀測範疇。而要想直接證明K介子違背宇稱和電荷聯合守恆定律,其主要途徑是研究K介子衰變為其它粒子的過程。K介子可衰變為兩個介子。物理學家們曾從理論上指出,通過實驗測量出一定數量K介子中有多少衰變為介子,這一比值如果不接近零,那么即可被視為直接證明了宇稱和電荷聯合定律不守恆。
據報導,各國科學家們近年來一直在從事K介子衰變為介子比值的測算,但所獲得結果都無法被認為是確切的證明。而費米實驗室所獲得的最新數值結果(0.00280誤差0.00041),由於其精確度比此前實驗都有所提高,從而直接證明了宇稱和電荷守恆定律確實有局限性。
宇稱和電荷聯合定律不守恆最早發現者之一、曾獲1980年諾貝爾物理獎的克洛寧教授在評價費米實驗室新成果時稱,這是自發現違背宇稱和電荷守恆定律的現象35年來,人們首次獲得的有關該問題真正新的認識。普林斯頓大學教授瓦爾·菲奇說:“這個結果讓人極其詫異,這是完全沒有預料到的,它非常、非常有意思。”
摘自獨立學者靈遁者量子力學科普書籍《見微知著
即與宇稱守恆相反,在弱相互作用中適用。

相關詞條

熱門詞條

聯絡我們