CL設定

CL設定

CL(CAS Latency):為CAS的延遲時間,這是縱向地址脈衝的反應時間,也是在一定頻率下衡量支持不同規範的記憶體的重要標誌之一。

記憶體負責向CPU提供運算所需的原始數據,而目前CPU運行速度超過記憶體數據傳輸速度很多,因此很多情況下CPU都需要等待記憶體提供數據,這就是常說的“CPU等待時間”。

記憶體傳輸速度越慢,CPU等待時間就會越長,系統整體性能受到的影響就越大。因此,快速的記憶體是有效提升CPU效率和整機性能的關鍵之一。

基本介紹

  • 中文名:CL設定
  • 外文名:CAS Latency
  • 所屬領域:計算機
  • 相關名詞:CPU等待時間
特點,技術範例,查看設定,相關技術,雙通道記憶體,雙通道晶片組,

特點

在實際工作時,無論什麼類型的記憶體,在數據被傳輸之前,傳送方必須花費一定時間去等待傳輸請求的回響,通俗點說就是傳輸前傳輸雙方必須要進行必要的通信,而這種就會造成傳輸的一定延遲時間。CL設定一定程度上反映出了該記憶體在CPU接到讀取記憶體數據的指令後,到正式開始讀取數據所需的等待時間。不難看出同頻率的記憶體,CL設定低的更具有速度優勢。
上面只是給大家建立一個基本的CL概念,而實際上記憶體延遲的基本因素絕對不止這些。記憶體延遲時間有個專門的術語叫“Latency”。要形象的了解延遲,我們不妨把記憶體當成一個存儲著數據的數組,或者一個EXCEL表格,要確定每個數據的位置,每個數據都是以行和列編排序號來標示,在確定了行、列序號之後該數據就唯一了。記憶體工作時,在要讀取或寫入某數據,記憶體控制晶片會先把數據的列地址傳送過去,這個RAS信號(Row Address Strobe,行地址信號)就被激活,而在轉化到行數據前,需要經過幾個執行周期,然後接下來CAS信號(Column Address Strobe,列地址信號)被激活。在RAS信號和CAS信號之間的幾個執行周期就是RAS-to-CAS延遲時間。在CAS信號被執行之後同樣也需要幾個執行周期。此執行周期在使用標準PC133的SDRAM大約是2到3個周期;而DDR RAM則是4到5個周期。在DDR中,真正的CAS延遲時間則是2到2.5個執行周期。RAS-to-CAS的時間則視技術而定,大約是5到7個周期,這也是延遲的基本因素。
CL設定較低的記憶體具備更高的優勢,這可以從總的延遲時間來表現。記憶體總的延遲時間有一個計算公式,總延遲時間=系統時鐘周期×CL模式數+存取時間(tAC)。首先來了解一下存取時間(tAC)的概念,tAC是Access Time from CLK的縮寫,是指最大CAS延遲時的最大數輸入時鐘,是以納秒為單位的,與記憶體時鐘周期是完全不同的概念,雖然都是以納秒為單位。存取時間(tAC)代表著讀取、寫入的時間,而時鐘頻率則代表記憶體的速度。

技術範例

舉個例子來計算一下總延遲時間,比如一條DDR333記憶體其存取時間為6ns,而其記憶體時鐘周期為6ns(DDR記憶體時鐘周期=1X2/記憶體頻率,DDR400記憶體頻率為400,則可計算出其時鐘周期為6ns)。我們在主機板的BIOS中將其CL設定為2.5,則總的延遲時間=6ns X2.5+6ns=21ns,而如果CL設定為2,那么總的延遲時間=6ns X2+6ns=18 ns,就減少了3ns的時間。
從總的延遲時間來看,CL值的大小起到了很關鍵的作用。所以對系統要求高和喜歡超頻的用戶通常喜歡購買CL值較低的記憶體。目前各記憶體顆粒廠商除了從提高記憶體時鐘頻率來提高DDR的性能之外,已經考慮通過更進一步的降低CAS延遲時間來提高記憶體性能。
不過,並不是說CL值越低性能就越好,因為其它的因素會影響這個數據。例如,新一代處理器的高速快取較有效率,這表示處理器比較少地直接從記憶體讀取數據。再者,列的數據會比較常被存取,所以RAS-to-CAS的發生幾率也大,讀取的時間也會增多。最後,有時會發生同時讀取大量數據的情形,在這種情形下,相鄰的記憶體數據會一次被讀取出來,CAS延遲時間只會發生一次。
選擇購買記憶體時,最好選擇同樣CL設定的記憶體,因為不同速度的記憶體混插在系統內,系統會以較慢的速度來運行,也就是當CL2.5和CL2的記憶體同時插在主機內,系統會自動讓兩條記憶體都工作在CL2.5狀態,造成資源浪費。

查看設定

CL指的是記憶體的延遲,數字越小越好,延遲有四個部分如4-4-4-12,由於一般前三個數字一樣,最後一個數字是前三個的和(一般是這樣)所以簡寫成CL=4
開機後進BIOS(一般默認鍵是DEL鍵),選擇高級晶片組設定中的記憶體設定項,切換到手動狀態,就可以對包括CL在內的記憶體時序參數作出適當調整,一般DDR266是2.5,DDR333和DDR400是3,DDR二是3.5以上。

相關技術

雙通道記憶體

雙通道記憶體技術其實是一種記憶體控制和管理技術,它依賴於晶片組記憶體控制器發生作用,在理論上能夠使兩條同等規格記憶體所提供的頻寬增長一倍。它並不是什麼新技術,早就被套用於伺服器和工作站系統中了,只是為了解決台式機日益窘迫的記憶體頻寬瓶頸問題它才走到了台式機主機板技術的前台。在幾年前,英特爾公司曾經推出了支持雙通道記憶體傳輸技術的i820晶片組,它與RDRAM記憶體構成了一對黃金搭檔,所發揮出來的卓絕性能使其一時成為市場的最大亮點,但生產成本過高的缺陷卻造成了叫好不叫座的情況,最後被市場所淘汰。由於英特爾已經放棄了對RDRAM的支持,所以目前主流晶片組的雙通道記憶體技術均是指雙通道DDR記憶體技術,主流雙通道記憶體平台英特爾方面是英特爾 865/875系列,而AMD方面則是NVIDIA Nforce2系列。
雙通道記憶體技術是解決CPU匯流排頻寬記憶體頻寬的矛盾的低價、高性能的方案。現在CPU的FSB(前端匯流排頻率)越來越高,英特爾 Pentium 4比AMD Athlon XP對記憶體頻寬具有高得多的需求。英特爾 Pentium 4處理器與北橋晶片的數據傳輸採用QDR(Quad Data Rate,四次數據傳輸)技術,其FSB是外頻的4倍。英特爾 Pentium 4的FSB分別是400/533/800MHz,匯流排頻寬分別是3.2GB/sec,4.2GB/sec和6.4GB/sec,而DDR 266/DDR 333/DDR 400所能提供的記憶體頻寬分別是2.1GB/sec,2.7GB/sec和3.2GB/sec。在單通道記憶體模式下,DDR記憶體無法提供CPU所需要的數據頻寬從而成為系統的性能瓶頸。而在雙通道記憶體模式下,雙通道DDR 266/DDR 333/DDR 400所能提供的記憶體頻寬分別是4.2GB/sec,5.4GB/sec和6.4GB/sec,在這裡可以看到,雙通道DDR 400記憶體剛好可以滿足800MHz FSB Pentium 4處理器的頻寬需求。而對AMD Athlon XP平台而言,其處理器與北橋晶片的數據傳輸技術採用DDR(Double Data Rate,雙倍數據傳輸)技術,FSB是外頻的2倍,其對記憶體頻寬的需求遠遠低於英特爾 Pentium 4平台,其FSB分別為266/333/400MHz,匯流排頻寬分別是2.1GB/sec,2.7GB/sec和3.2GB/sec,使用單通道的DDR 266/DDR 333/DDR 400就能滿足其頻寬需求,所以在AMD K7平台上使用雙通道DDR記憶體技術,可說是收效不多,性能提高並不如英特爾平台那樣明顯,對性能影響最明顯的還是採用集成顯示晶片的整合型主機板
NVIDIA推出的nForce晶片組是第一個把DDR記憶體接口擴展為128-bit的晶片組,隨後英特爾在它的E7500伺服器主機板晶片組上也使用了這種雙通道DDR記憶體技術,SiS和VIA也紛紛回響,積極研發這項可使DDR記憶體頻寬成倍增長的技術。但是,由於種種原因,要實現這種雙通道DDR(128 bit的並行記憶體接口)傳輸對於眾多晶片組廠商來說絕非易事。DDR SDRAM記憶體和RDRAM記憶體完全不同,後者有著高延時的特性並且為串列傳輸方式,這些特性決定了設計一款支持雙通道RDRAM記憶體晶片組的難度和成本都不算太高。但DDR SDRAM記憶體卻有著自身局限性,它本身是低延時特性的,採用的是並行傳輸模式,還有最重要的一點:當DDR SDRAM工作頻率高於400MHz時,其信號波形往往會出現失真問題,這些都為設計一款支持雙通道DDR記憶體系統的晶片組帶來不小的難度,晶片組的製造成本也會相應地提高,這些因素都制約著這項記憶體控制技術的發展。
普通的單通道記憶體系統具有一個64位的記憶體控制器,而雙通道記憶體系統則有2個64位的記憶體控制器,在雙通道模式下具有128bit的記憶體位寬,從而在理論上把記憶體頻寬提高一倍。雖然雙64位記憶體體系所提供的頻寬等同於一個128位記憶體體系所提供的頻寬,但是二者所達到效果卻是不同的。雙通道體系包含了兩個獨立的、具備互補性的智慧型記憶體控制器,理論上來說,兩個記憶體控制器都能夠在彼此間零延遲的情況下同時運作。比如說兩個記憶體控制器,一個為A、另一個為B。當控制器B準備進行下一次存取記憶體的時候,控制器A就在讀/寫主記憶體,反之亦然。兩個記憶體控制器的這種互補“天性”可以讓等待時間縮減50%。雙通道DDR的兩個記憶體控制器在功能上是完全一樣的,並且兩個控制器的時序參數都是可以單獨編程設定的。這樣的靈活性可以讓用戶使用二條不同構造、容量、速度的DIMM記憶體條,此時雙通道DDR簡單地調整到最低的記憶體標準來實現128bit頻寬,允許不同密度/等待時間特性的DIMM記憶體條可以可靠地共同運作。

雙通道晶片組

英特爾平台方面有英特爾的865P/865G/865GV/865PE/875P以及之後的915/925系列;VIA的PT880,ATI的Radeon 9100 IGP系列,SIS的SIIS 655,SIS 655FX和SIS 655TX;AMD平台方面則有VIA的KT880,NVIDIA的nForce2 Ultra 400,nForce2 IGP,nForce2 SPP及其以後的晶片。

相關詞條

熱門詞條

聯絡我們