誘變育種

誘變育種

誘變育種(mutation breeding)在人為的條件下,利用物理、化學等因素,誘發生物體產生突變,從中選擇,培育成動植物和微生物的新品種。

基本介紹

  • 中文名:誘變育種
  • 外文名:mutation breeding
  • 利用:物理、化學等因素
  • 誘發:生物體產生突變
概述,簡介,發展簡史,方法,物理誘變,化學誘變,存在問題,後代處理,

概述

簡介

誘變育種是指用物理、化學因素誘導動植物的遺傳特性發生變異,再從變異群體中選擇符合人們某種要求的單株/個體,進而培育成新的品種或種質的育種方法。它是繼選擇育種雜交育種之後發展起來的一項現代育種技術。

發展簡史

1927年美國H.J.馬勒發現 X射線能引起果蠅發生可遺傳的變異。1928年美國L.J.斯塔特勒證實X射線對玉米和大麥有誘變效應。此後,瑞典H.尼爾松-埃赫勒和A.古斯塔夫森在1930年利用輻射得到了有實用價值的大麥突變體;D.托倫納在1934年利用 X射線育成了優質的菸草品種“赫洛里納”。1942年,C.奧爾巴克發現芥子氣能導致類似 X射線所產生的各種突變,1948年A.古斯塔夫森用芥子氣誘發大麥產生突變體。50年代以後,誘變育種方法得到改進,成效更為顯著,如美國用X 射線和中子引變,育成了用雜交方法未獲成功的抗枯萎病的胡椒薄荷品種Todd's Mitcham等。70年代以來,誘變因素從早期的 X射線發展到γ射線中子、多種化學誘變劑生理活性物質,誘變方法從單一處理髮展到複合處理,同時,誘變育種與雜交育種組織培養等密切結合,大大提高了誘變育種的實際意義。
中國在宋朝宣和年間曾有用藥物處理牡丹的根,從而誘發花色變異的記載。但用現代方法進行誘變育種,則始於50年代後期。1965年以後各地陸續用此法育成了許多優良品種投入生產。據1985年的不完全統計,誘變育成的農作物優良品種有190多個。
我們知道,常規助雜交育種基本上是染色體的重新組合,這種技術一般並不引起染色體發生變異,更難以觸及到基因。而輻射的作用則不同,它們有的是與細胞中的原子、分子發生衝撞、造成電離或激發;有的則是以能量形式產生光電吸收或光電效應;還有的能引起細胞內的一系列理化過程。這些都會對細胞產生不同程度的傷害。對染色體的數目、結構等都會產生影響,使有的染色體斷裂了;有的丟失了一段,有的斷裂後在“自我修復”的過程中頭尾接倒了或是“張冠李戴”分別造成染色體的倒位和易位。當然射線也可作用在染色體核苷酸分子的鹼塞上,從而使基因(遺傳密碼)發生突變。至於化學誘變,有的藥劑是用其烷基置換其它分子中的 氫原子,也有的本身是核苷酸鹼基的類似物,它可以“魚目混珠”,造成DNA複製中的錯誤。無疑這些都會使植物的基因發生突變。理、化因索的誘導作用;使得植物細胞突變率比平時高出千百倍,有些變異是其它手段難以得到的。當然,所產生的變異絕大多數不能遺傳,所以,輻射後的早代一般不急 於選擇。
但是,可遺傳的好性狀一經獲得便可育成品種或種質資源。據世界原子能機構1985年統計,當時世界各國通過誘變已育成500多個品種,還有大量有價值的種質資源。中國的誘變育種同樣成績斐然,在過去的幾十年中,經誘變育成的 品種數一直占到同期育成品種總數的10%左右。如水稻品種原豐早,小麥品種山農輻63,還有玉米的魯原單4號、大豆的鐵豐18、棉花的魯棉I號等都是通過誘變育成的。當然與其它技術一樣,誘變育種也有自身的弱點:一是誘變產生的有益突變體頻率低;二是還難以有效地控制變異 的方向和性質;另外,誘發並鑑定出數量性狀微突變比較困難。因此,誘變育種應該與其它技術相結合,同時謀求技術上的自我完善。

方法

物理誘變

套用較多的是輻射誘變,即用α射線β射線γ射線、Χ射線、中子和其他粒子紫外輻射以及微波輻射等物理因素誘發變異。當通過輻射將能量傳遞到生物體內時,生物體內各種分子便產生電離和激發,接著產生許多化學性質十分活躍的自由原子或自由基團。它們繼續相互反應,並與其周圍物質特別是大分子核酸和蛋白質反應,引起分子結構的改變。由此又影響到細胞內的一些生化過程,如 DNA合成的中止、各種酶活性的改變等,使各部分結構進一步深刻變化,其中尤其重要的是染色體損傷。由於染色體斷裂和重接而產生的染色體結構和數目的變異即染色體突變,而DNA分子結構中鹼基的變化則造成基因突變。那些帶有染色體突變或基因突變的細胞,經過細胞世代將變異了的遺傳物質傳至性細胞或無性繁殖器官,即可產生生物體的遺傳變異
目前一種新型高效的物理誘變方法——氦氣常壓室溫電漿誘變育種技術廣泛套用於細菌、真菌、放線菌、黴菌、藻類、大型真菌、植物及動物細胞。以高純氦氣為工作氣體,利用射頻輝光放電原理,在常溫常壓狀態下產生高能量的電漿,其富含的高能化學活性粒子能夠對菌株/植物/動物細胞產生高強度遺傳物質損失,進而利用細胞啟動的SOS高容錯率修復機制,產生種類多樣的錯配位點,最終形成了遺傳穩定、種類豐富的突變株。研究發現,由於氦氣是最小的單原子分子,其激發後釋放出來的活性粒子能量最高,達到19.8eV,而其他氣體電漿的活性粒子能量均比氦電漿低很多。
誘變處理的材料宜選用綜合性狀優良而只有個別缺點的品種、品系或雜種。由於材料的遺傳背景和對誘變因素的反應不同,出現有益突變的難易各異,因此進行誘變處理的材料要適當多樣化。由於不同科、屬、種及不同品種植物的輻射敏感性不同,其對誘變因素反應的強弱和快慢也各異。如十字花科白菜的敏感性小於禾本科的水稻、大麥,而水稻、大麥的敏感性又小於豆科的大豆。另外,輻射敏感性的大小還同植物的倍數性、發育階段、生理狀態和不同的器官組織等有關。如二倍體植物大於多倍體植物,大粒種子大於小粒種子,幼齡植株大於老齡植株,萌動種子大於休眠種子,性細胞大於體細胞等。根據誘變因素的特點和作物對誘變因素敏感性的大小,在正確選用處理材料的基礎上,選擇適宜的誘變劑量是誘變育種取得成效的關鍵(表 1)。適宜誘變劑量是指能夠最有效地誘發作物產生有益突變的劑量,一般用半致死劑量LD50)表示。不同誘變因素採用不同的劑量單位。Χ、γ射線線吸收劑量以拉德(rad)或戈瑞(GY)為單位,照射劑量倫琴(R)為單位,中子用注量表示。同時要注意單位時間的照射劑量(劑量率、注量率)以及處理的時間和條件。
輻照方法分外照射和內照射兩種,前者指被照射的植物接受來自外部的γ射線源、Χ射線源或中子源等輻射源輻照,這種方法簡便安全,可進行大量處理。後者指將放射性物質(如32P、35S等)引入植物體內進行輻照,此法容易造成污染,需要防護條件,而且被吸收的劑量也難以精確測定。乾種子因便於大量處理和便於運輸、貯藏,用於輻照最為簡便。

化學誘變

化學誘變除能引起基因突變外,還具有和輻射相類似的生物學效應,如引起染色體斷裂等,常用於處理遲發突變,並對某特定的基因或核酸有選擇性作用化學誘變劑主要有:①烷化劑。這類物質含有1個或多個活躍的烷基,能轉移到電子密度較高的分子中去,置換其他分子中的氫原子而使鹼基改變。常用的有甲基磺酸乙酯(EMS)、乙烯亞胺(EI)、亞硝基乙基脲烷(NEU)、亞硝基甲基脲烷(NMU)、硫酸二乙酯(DES)等。②核酸鹼基類似物。為一類與DNA鹼基相類似的化合物。滲入DNA後,可使DNA複製發生配對上的錯誤。常用的有5-溴尿嘧啶(BU)、5-溴去氧尿核苷(BudR)等。③抗生素。如重氮絲氨酸、絲裂毒素C等,具有破壞DNA和核酸的能力,從而可造成染色體斷裂
化學誘變主要用於處理種子,其次為處理植株。種子處理時,先在水中浸泡一定時間,或以乾種子直接浸在一定濃度的誘變劑溶液中處理一定時間,水洗後立即播種,或先將種子乾燥、貯藏,以後播種。植株處理時,簡單的方法是在莖稈上切一淺口,用脫脂棉把誘變劑溶液引入植物體,也可對需要處理的器官進行注射或塗抹。套用的化學誘變劑濃度要適當(表 2)。處理時間以使受處理的器官、組織完成水合作用和能被誘變劑所浸透為度。化學誘變劑大都是潛在的致癌物質,使用時必須謹慎。

存在問題

誘變育種存在的主要問題是有益突變頻率仍然較低,變異的方向和性質尚難控制。因此提高誘變效率,迅速鑑定和篩選突變體以及探索定向誘變的途徑,是當前研究的重要課題。

後代處理

經誘變處理產生的誘變一代,以M1表示。由於受射線等誘變因素的抑制和損傷,M1的發芽率、出苗率、成株率、結實率一般較低,發育延遲,植株矮化或畸形,並出現嵌合體。但這些變化一般不能遺傳給後代。誘變引起的遺傳變異多數為隱性,因此M1一般不進行選擇,而以單株、單穗或以處理為單位收穫。誘變二代(M2)是變異最大的世代,也是選擇的關鍵時期,可根據育種目標及性狀遺傳特點選擇優良單株(穗)。多數變異是不利的,但也能出現早熟、桿矮、抗病、抗逆、品質優良等有益變異,變異頻率約為0.1~0.2%。誘變三代(M3)以後,隨著世代的增加,性狀分離減少,有些性狀一經獲得即可迅速穩定。經過幾個世代的選擇就能獲得穩定的優良突變系,再進一步試驗育成新品種。具有某些突出性狀的突變系,還可用作雜交親本。

相關詞條

熱門詞條

聯絡我們