汪德偉

姓名: 汪德偉

性別: 男

民族:漢

出生年月:1983-12

籍貫:陝西安康

最高學歷/學位: 博士研究生

研究方向:炭材料在超電、鋰電狼乎舉以及環境保護等領域霉擊背的基礎研究
學漿店槓術兼職
J. Power Sources, ACS Sustainable Chemistry & Engineering,Electrochimica Acta, Nanotechnology,RSC Advances,Journal of Physics and Chemistry of Solids,Ionics,Materials Letters,Materials Research Express等國際期刊審稿人。
主持的科研項朵提目
國家自察犁巴然科學基金 雷射誘導還原氧化石墨及其用於超級電容器電極材料研究 (No. 21303257)
發少芝您虹表論文情況
近年來以第一作者/通仔局只訂訊作者在J. Power Sources, Inorg. Chem., Electrochimica Acta, CrystEngComm, Nanotechnology等國際期刊發表SCI論文17篇,影響因子> 3的論文9篇,有3篇入選 “most cited papers” 。發表論文被SCI他引400餘次,單篇最高126次,H因子為9 (Researcher ID: E-5026-2010, ORCID ID: 0000-0002-0357-3248)。
1.Dewei Wang*, et al. A melt route for the synthesis of activated carbon derived from carton box for high performance symmetric supercapacitor applications, J. Power Sources. 2016, 307, 401-409.
2. Dewei Wang*, et al. From Trash to Treasure: Direct Transformation of Onion Husks into Three-Dimensional Interconnected Porous Carbon Frameworks for High-Performance Supercapacitors in Organic Electrolyte, Electrochimica Acta, 2016, 216, 405-411.
3. Dewei Wang*, et al. Construction of hierarchical porous graphene–carbon nanotubes hybrid with high surface area for high performance supercapacitor applications, J. Solid. State. Electrochem. In press, doi: 10.1007/s10008-016-3403-4.
4. Dewei Wang*, et al. Facile synthesis of wheat bran-derived honeycomb-like hierarchical carbon for advanced symmetric supercapacitor applications. J. Solid. State. Electrochem. 2015, 19, 577-584.
5. Dewei Wang*, et al. Laser induced self-propagating reduction and exfoliation of graphite oxide as an electrode material for supercapacitors. Electrochimica Acta, 2014,141,271-278.
6. Dewei Wang, et al. A general approach for fabrication of nitrogen-doped graphene sheets and its application in supercapacitors. J. Colloid Interface Sci. 2014, 417, 270–277.
7. Dewei Wang, et al. Controlled synthesis of mesoporous nickel oxide nanostructures and their electrochemical capacitive behaviors. Ionics, 2013, 19, 559-570.
8. Qihua Wang, Dewei Wang*, et al. Superparamagnetic magnetite nanocrystals-graphene oxide nanocomposites: facile synthesis and their enhanced electric double-layer capacitor performance.J. Nanosci. Nanotechnol. 2012,12, 4583-4590.
9. Dewei Wang, et al. Nanostructured Fe2O3–graphene composite as a novel electrode material for supercapacitors. J. Solid. State. Electrochem. 2012, 16, 2095-2102.
10. Dewei Wang, et al. Porous Mn3O4 nanocrystals–graphene nanocomposites for high–performance supercapacitors. Eur. J. Inorg. Chem. 2012, 628–635.
11. Qihua Wang,Dewei Wang*, et al. Porous SnO2 nanoflakes with loose-packed structure: Morphology conserved transformation from SnS2 precursor and application in lithium ion batteries and gas sensors. J. Phys. Chem. Solids. 2011, 72, 630–636.
12. Qihua Wang, Dewei Wang* et al. Shape-controlled Synthesis of Porous SnO2 Nanostructures via Morphological Conserved Transformation from SnC2O4 Precursor Approach. Nano-Micro Lett. 2011, 3, 34-42.
13. Dewei Wang, et al. Controlled growth of uniform nanoflakes-built pyrite FeS2 microspheres and their electrochemical properties. Ionics, 2011, 17, 163–167.
14. Dewei Wang, et al. Controlled synthesis of mesoporous hematite nanostructures and their application as electrochemical capacitor electrodes. Nanotechnology, 2011, 22, 135604.
15. Dewei Wang, et al. Morphology-Controllable Synthesis of Cobalt Oxalates and Their Conversion to Mesoporous Co3O4 Nanostructures for Application in Supercapacitors. Inorg. Chem. 2011, 50, 6482–6492.
16. Dewei Wang, et al. Controlled growth of pyrite FeS2 crystallites by a facile surfactant-assisted solvothermal method. CrystEngComm, 2010, 12, 755–761.
17. Dewei Wang, et al. Shape controlled growth of pyrite FeS2 crystallites via a polymer-assisted hydrothermal route. CrystEngComm, 2010, 12, 3797–3805.
5. Dewei Wang*, et al. Laser induced self-propagating reduction and exfoliation of graphite oxide as an electrode material for supercapacitors. Electrochimica Acta, 2014,141,271-278.
6. Dewei Wang, et al. A general approach for fabrication of nitrogen-doped graphene sheets and its application in supercapacitors. J. Colloid Interface Sci. 2014, 417, 270–277.
7. Dewei Wang, et al. Controlled synthesis of mesoporous nickel oxide nanostructures and their electrochemical capacitive behaviors. Ionics, 2013, 19, 559-570.
8. Qihua Wang, Dewei Wang*, et al. Superparamagnetic magnetite nanocrystals-graphene oxide nanocomposites: facile synthesis and their enhanced electric double-layer capacitor performance.J. Nanosci. Nanotechnol. 2012,12, 4583-4590.
9. Dewei Wang, et al. Nanostructured Fe2O3–graphene composite as a novel electrode material for supercapacitors. J. Solid. State. Electrochem. 2012, 16, 2095-2102.
10. Dewei Wang, et al. Porous Mn3O4 nanocrystals–graphene nanocomposites for high–performance supercapacitors. Eur. J. Inorg. Chem. 2012, 628–635.
11. Qihua Wang,Dewei Wang*, et al. Porous SnO2 nanoflakes with loose-packed structure: Morphology conserved transformation from SnS2 precursor and application in lithium ion batteries and gas sensors. J. Phys. Chem. Solids. 2011, 72, 630–636.
12. Qihua Wang, Dewei Wang* et al. Shape-controlled Synthesis of Porous SnO2 Nanostructures via Morphological Conserved Transformation from SnC2O4 Precursor Approach. Nano-Micro Lett. 2011, 3, 34-42.
13. Dewei Wang, et al. Controlled growth of uniform nanoflakes-built pyrite FeS2 microspheres and their electrochemical properties. Ionics, 2011, 17, 163–167.
14. Dewei Wang, et al. Controlled synthesis of mesoporous hematite nanostructures and their application as electrochemical capacitor electrodes. Nanotechnology, 2011, 22, 135604.
15. Dewei Wang, et al. Morphology-Controllable Synthesis of Cobalt Oxalates and Their Conversion to Mesoporous Co3O4 Nanostructures for Application in Supercapacitors. Inorg. Chem. 2011, 50, 6482–6492.
16. Dewei Wang, et al. Controlled growth of pyrite FeS2 crystallites by a facile surfactant-assisted solvothermal method. CrystEngComm, 2010, 12, 755–761.
17. Dewei Wang, et al. Shape controlled growth of pyrite FeS2 crystallites via a polymer-assisted hydrothermal route. CrystEngComm, 2010, 12, 3797–3805.

相關詞條

熱門詞條

聯絡我們