方位線

方位線是使建設過程中更準確的定向井輔助線。

基本介紹

  • 中文名:定向井
  • 外文名:directional well
  • 基本剖面類型:“J”型、“S”型和連續增斜
  • 測斜方法:平均角法,平衡正切法等
  • 意義:建設過程中更準確
定向井的剖面類型及其套用,定義:,類型:,定向井井身參數,測量井深,井斜角,方位角,造斜點,垂直井深,閉合距和閉合方位,井斜變化率和方位變化率,方位提前角(或導角),狗腿嚴重度,測斜計算的主要方法,平均角法(角平均法),平衡正切法,曲率半徑法(圓柱螺線法),最小曲率法,

定向井的剖面類型及其套用

定義:

定向鑽井就是“使井眼按預定方向偏斜,鑽達地下預定目標的一門科學技術”。定向鑽井的套用範圍很廣,可歸納如圖9-l所示。

類型:


定向井的剖面類型共有十多種,但是,大多數常規定向井的剖面是三種基本剖面類型,見圖9-2,稱為“J”型、“S”型和連續增斜型。按井斜角的大小範圍定向井又可分為:

常規定向井井斜角<55°
大斜度井井斜角55~85°
水平井井斜角>85°(有水平延伸段)

定向井井身參數

實際鑽井的定向井井眼軸線是一條空間曲線。鑽進一定的井段後,要進行測斜,被測的點叫測點。兩個測點之間的距離稱為測段長度。每個測點的基本參數有三項:井斜角、方位角和井深,這三項稱為井身基本參數,也叫井身三要素。

測量井深

指井口至測點間的井眼實際長度。

井斜角

測點處的井眼方向線與重力線之間的夾角。

方位角

以正北方向線為始邊,順時針旋轉至方位線所轉過的角度,該方向線是指在水平面上,方位角可在0—360°之間變化。
目前,廣泛使用的各種磁力測斜儀測得的方位值是以地球磁北方位線為準的,稱為磁方位角。磁北方向線與正北方向線之間有一個夾角,稱磁偏角,磁偏角有東、西之分,稱為東或西磁偏角,真方位的計算式如下:
真方位=磁方位角十東磁偏角
或真方位=磁方位角一西磁偏角
公式可概括為“東加西減”四個字。
方位角也有以象限表示的,以南(S)北(N)方向向東(E)西(W)方向的偏斜表示,如N10°E,S20°W。在進行磁方位校正時,必須注意磁偏角在各個象限里是“加上”還是“減去”,如圖9-3所示。

造斜點

從垂直井段開始傾斜的起點。

垂直井深

通過井眼軌跡上某點的水平面到井口的距離。

閉合距和閉合方位

(l)閉合距:指水平投影面上測點到井口的距離,通常指靶點或井底的位移,而其他測點的閉合距離可稱為水平位移。
(2)閉合方位:指水平投影響圖上,從正北方向順時針轉至測點與井口連線之間的夾角。

井斜變化率和方位變化率

井斜變化率是指單位長度內的井斜角度變化情況,方位變化率是指單位長度內的方位角變化情況,均以度/100米來表示(也可使用度/30米或度/100英尺等)。

方位提前角(或導角)

預計造斜時方位線與靶點方向線之間的夾角。

狗腿嚴重度

狗腿嚴重是用來測量井眼彎曲程度或變化快慢的參數(以度/100英尺表示)。可用解析法、圖解法、查表法、尺算法等來計算狗腿嚴重度k。
1.第一套公式

2.第二套公式
cosγ=cosa1cosa2+sina1sina2cosΔj………………………………………(9-3)
本式是由魯賓斯基推導出來的,使用非常普遍。美國人按上式計算出不同的a1、a2和Δj值下的狗腿角γ值,並列成表格,形成了查表法。
3.第三套公式。

γ——兩測點間的狗腿角。

測斜計算的主要方法

測斜計算的方法可分為兩大類二十多種。一類是把井眼軸線視為由很多直線段組成,另一類則視其為不同曲率半徑的圓弧組成。計算方法多種多樣,測段形狀不可確定。主要的計算方法有正切法、平衡正切法、平均角法、曲率半徑法、最小曲率法、弦步法和麥庫立法。從計算精度來講,最高的是曲率半徑法和最小曲率法,其次是平均角法。以下各圖和計算公式中下角符號1、2分別代表上測和下測點。

平均角法(角平均法)

此法認為兩測點間的測段為一條直線,該直線的方向為上下兩測點處井眼方向的矢量和方向。

測段計算公式:

平衡正切法

此法假定二測點間的井段為兩段各等於測段長度一半的直線構成的折線,它們的方向分別與上、下兩測點處的井眼方向一致。

如圖9-6,計算式為:

曲率半徑法(圓柱螺線法)

此法假設兩測點間的測段是條等變螺旋角的圓柱螺線,螺線在兩端點處與上、下二測點處的井眼方向相切。
如圖9-7,測段的計算公式有三種表達形式。

(1)第一種表達形式

(9-13)~(9-16)式中:
這四個公式是最常用的計算公式:

(3)第三種表達形式
(4)曲率半徑法的特殊情況處理

③第三種特殊情況,α1≠α2,且其中之一等於零。此時,按二測點方位角相等來處理,然後代入第二種特殊情況的計算式中。

最小曲率法

最小曲率法假設兩測點間的井段是一段平面的圓弧,圓弧在兩端點處與上下二測點處的井眼方向線相切。測段計算如圖9-8。

測段計算公式如下:
令fM=(2/γ)×tg(γ/2),fM是個大於1但很接近1的值。在狗腿角γ足夠小的情況下,可近似認為fM=1,這時上述四個計算公式就完全變成平衡正切法的公式了,它是對平衡正切法公式的校正。
ΔS′是切線1M和M2在水平面上的投影之和,即ΔS′=1′M′+M′2′。ΔS′並不是測段的水平投影長度ΔS。要作出井身垂直剖面圖,需要求出ΔS,而最小曲率法卻求不出ΔS,這是最小曲率法的缺點。為了作出垂直剖面圖,可用下式近似地求出ΔS′:
……………………………………………………(9-39)
第二節定向井剖面設計
在開鑽前認真進行設計,可以大大節約定向鑽井的成本。影響井眼軌跡的因素很多,其中一些因素很難進行估算(如在某些地層中的方位漂移情況等)。因此,在同一地區得到的鑽井經驗很重要,這些經驗可以在其他井設計過程中起重要的參考作用。
一.設計資料
要進行一口定向井的軌道設計工作,作業者至少應提供靶點的垂深、水平位移和方位角,或提供井口與靶點的座標位置,通過座標換算,計算出方位角和水平位移。此外,定向井工程師還要收集下列資料:
1.作業區域和地理位置。通過作業區域,通常可以找到該地區已完井的鑽井作業資料(野貓井除外),並對地層情況、方位漂移有一定的了解,根據地理位置,可以計算或查得到地磁偏角。
2.地質設計書和井身結構。了解有關地層壓力、地溫梯度、地層傾角、走向、岩性、斷層,可能遇到的複雜情況,以及油藏工程師的特殊要求等。
3.作業者對造斜點、造斜率、增(降)斜率的要求,以及安全圓柱、最大井斜等井身質量的要求。
4.了解鑽井承包商的情況,如泥漿泵性能,井下鑽具組合各組件的基本情況等。
二.設計原則
1.能實現鑽定向井的目的
定向井設計首先要保證實現鑽井目的,這是定向井設計的基本原則。設計人員應根據不同的鑽探目的對設計井的井身剖面類型、井身結構、鑽井液類型、完井方法等進行合理設計,以利於安全、優質、快速鑽井。
如救險井的鑽井目的是制服井噴和滅火,保護油、氣資源。因此,救險井的設計應充分體現其目的:一是靶點的層位選擇合理。二是靶區半徑小(小於10米),中靶要求高;三是儘可能選擇簡單的剖面類型,以減小井眼軌跡控制和施工難度,加快鑽井速度。四是井身結構、井控措施等應滿足要求。
2.儘可能利用方位的自然漂移規律在使用牙輪鑽頭鑽進時,方位角的變化往往有向右增加的趨勢,稱為右手漂移規律。如圖9-9所示,靶點為T,設計方位角為j′。若按j′定向鑽進,則會鑽達T′點,只有按照j角方向鑽進,才會鑽達目標點T。Δj角稱為提前角,提前角的大小,要根據地區的實鑽資料,統計出方位漂移率來確定,我國海上開發井一般取2~7度。
目前流行的PDC鑽頭(如RC426型等),對方位右漂具有較好的抑制效果。在地
層傾角小、岩性穩定時,PDC鑽頭具有方位左漂的趨勢,這主要是由於PDC鑽頭的切削方式造成的。因此,要使用PDC鑽頭鑽進的定向井,提前角要適當地小一點。
3.根據油田的構造特徵,有利於提高油氣產量,提高投資效益。
4.有利於安全、優質和快速鑽井,滿足採油和修井的作業要求。
三.剖面設計中應考慮的問題
1.選擇合適的井眼曲率
井眼曲率不宜過小,這是因為井眼曲率限制太小會增加動力鑽具造斜井段、扭方位井段和增(降)斜井段的井眼長度,從而增大了井眼軌跡控制的工作量,影響鑽井速度。
井眼曲率也不宜過大,否則鑽具偏磨嚴重、摩阻力增大和起下鑽困難,也容易造成鍵槽卡鑽,還會給其他作業(如電測、固井以及採油和修井等)造成困難。因此,在定向井中應控制井眼曲率的最大值,我國海上定向井一般取7~16°/100米,最大不超過20°/100米。不同的井段要選用不同的井眼曲率,具體如下:
井下動力鑽具造斜的井眼曲率取:7~16°/100米。
轉盤鑽增斜的增斜率取:7~12°/100米。
轉盤鑽降斜的降斜率取:3~8°/100米。
井下動力鑽具扭方位的井眼曲率取:7~14°/100米。
導向馬達調方位或增斜的井眼曲率取:5~12°/100米。
說明:隨著中曲率大斜度井和水平井的迅速發展,對普通定向井的井眼曲率(或狗腿嚴重度)的限制越來越少,API標準中已不再規定常規定向井的狗腿嚴重度。

為了保證起下鑽順利和套管安全,必須對設計剖面的井眼曲率進行校核,以限制最大井眼曲率的數值。井下動力鑽具造斜和扭方位井段的井眼曲率Km應滿足下式:

Dc――套管外徑,厘米。
2.井眼尺寸
目前常規的定向井工具能滿足152~445毫米(6~171/2英寸)井眼的定向鑽井要求,一般地說,大尺寸井眼比較容易控制軌跡,但由於鑽鋌的尺寸也較大,形成彎曲所需的鑽壓較大,小井眼要使用更小、更柔的鑽具,而且地層因素對軌跡的影響也較大。因此小井眼的軌跡控制更困難一些。
在常規的井眼尺寸中,大多數定向井可採用直井的套管程式。如果實鑽井眼軌跡較光滑,沒有較大的狗腿,那么即使在大井斜井段,也能較順利地進行下套管作業。當然,在斜井段,應在套管上加扶正器以支撐套管,避免在下套管過程中發生壓差卡鑽,同時提高固井質量。另外,在大斜度井段,可根據井段長度和作業時間,決定是否使用厚壁套管。
3.鑽井液設計:
(1)定向井鑽井液設計十分重要,鑽井液應有足夠的攜砂能力和潤滑性,以減少卡鑽的機會;
(2)鑽井液性能控制對減少定向井鑽柱拉伸與扭矩也很重要;
(3)鑽井液中應加潤滑劑,鑽井液密度與粘度必須隨時控制。
(4)如果用水基鑽井液,那么在正常壓力井段,應使用高排量和低固相含量的鑽井液,這樣有利於清潔井眼;
(5)水基鑽井液應具有良好的潤滑性能,以減少鑽具摩阻和壓差卡鑽;然而在海上鑽井,一定要避免污染問題。
(6)如果有異常高壓井段要求鑽井液密度達到1.45克/厘米3或更高,那么應考慮在鑽開該高壓地層前下一層保護套管,以封固所有正常壓力井段。
4.造斜點的選擇
造斜點的選擇要適當淺些,但是在極淺的地層中造斜時,容易形成大井眼。同時,由於地層很軟,造斜完成後下入穩斜鑽具時,要特別小心,以免出現新井眼,尤其是在穩斜鑽具剛度大或造斜率較高時。通常地說,淺層造斜比深層造斜容易一些,因為深層地層往往膠結良好,機械鑽速低,需花費較長的造斜時間。
另外,造斜點通常選在前一層套管鞋以下30~50米處,以免損壞套管鞋,同時減少水泥掉塊產生卡鑽的可能性。
在深層地層造斜時,應儘量在大段砂層中造斜,因為砂層的井眼穩定,鑽速較快,而頁岩段較易受到沖蝕,鑽速較低,而且在以後長時間鑽井作業,容易在造斜段形成鍵槽而可能導致卡鑽。
5.靶區形狀和範圍
靶區形狀與範圍通常由地質構造、產層位置決定,並考慮油田油井的分布情況,靶區大小是由作業者確定的。通常認為,鞍區範圍不能定得太小,很小的靶區範圍不僅會增加作業成本,同時也會增加調整方位的次數,造成井眼軌跡不平滑,增加轉盤扭矩,同時也增加產生健槽卡鑽的可能性。
通常,靶區形狀為圓形(嚴格地講,應該是球形)。淺井和水平位移小的定向井,其靶區範圍小一些,一般靶區半徑30~50米,而深井和水平位移大的井,靶區範圍可以適當地大一些,一般靶區半徑為50~70米。
6.造斜率和降斜率選擇
常規定向井的造斜率為7~14°/100米,如果需要在淺層造斜並獲得較大的水平位移,造斜率可提高到14~16°/100米。但是,淺層的高造斜率容易出現新井眼,也容易對套管產生較大的磨損。因此,淺層造斜通常選擇較低的造斜率,而深層造斜(1000米~2000米)可選擇較高的造斜率。
對於“S”型井眼,通常把降斜率選在3~8°/100米,如果降斜後仍然要鑽較長的井段,則必須採用較小的降斜率平緩降斜,以避免鍵槽卡鑽,同時,可降低鑽進時的摩阻力。
7.最大井斜角
常規定向井的最大井斜角,一般在15~45°,如果井斜太小,則井眼的井斜和方位都較難控制。井斜大於60°時,鑽具的摩阻力將大大增加。
8.允許的方位偏移與極限
(1)定向鑽進時,初始造斜方向通常在設計方位的左邊(即選定導角),然後通過自然漂移鑽達靶區,井眼軌跡是一條空間曲線。
(2)但是對導角也有一個限制,在井眼密集的井網中,要求定向井軌跡保持在安全圓柱內,以避免與鄰井相碰。
(3)同樣,由於油藏特性和地質地層條件,也對導角的大小有一定的限制。
9.井身剖面類型
在滿足設計和工藝要求的前提下,儘可能縮短井段長度,因為井段短則鑽井時間短。在設計井身剖面形狀時,要考慮井身結構,造斜點一般選在套管鞋以下30~50米處。目前,我國海上定向井的井身剖面通常由作業者決定,往往選擇“J”型剖面。
四.剖面設計
1.設計步驟:
(l)選擇剖面類型;
(2)確定增斜率和降斜率,選擇造斜點;
(3)計算剖面上的未知參數,主要是最大井斜角;
(4)進行井身計算,包括各井段的井斜角、水平位移、垂深和斜深;
(5)繪製垂直剖面圖和水平投影圖。
井身剖面的設計方法有試算法、作圖法、查圖法和解析法四種。我國海洋定向井通常採用解析法,並使用計算機完成。剖面設計完成以後,應向作業者提供下列資料:
(1)總體定向鑽井方案和技術措施。
(2)剖面設計結果,包括設計條件、計算結果、垂直剖面圖和水平投影圖。
(3)測斜儀器類型和該地區的磁偏角,以及測斜計算方法;
(4)設備和工具計畫。
2.二維定向井設計(解析法)
解析法是根據給出的設計條件,套用解析公式計算出剖面上各井段的所有井身參數的井身設計方法。在使用計算機的條件下,還可同時給出設計井身的垂直投影圖和水平投影圖。
解析法進行井身剖面設計所用公式如下(用於三段制J型、五段制S型和連續增斜型剖面)。
(1)求最大井斜角αmax。
(2)各井段的井身參數計算:

①增斜段
②穩斜段

③降斜段

④穩斜段

⑤總井深L

(3)設計計算中特殊情況的處理

①當Ho2+So2-2RoSo=0時,表示該井段設有穩斜段,此時可由下面三個公式中任一個公式來求最大斜角αmax:

②當2Ro-So=0時,可用下式求最大井斜角αmax:
③當Ho2+So2-2RoSo<0,說明此種剖面不存在,此時應該改變設計條件,改變造斜點深度、增斜率和降斜率或改變目標點坐標。
井身剖面設計計算結果應整理列表,並校核井身長度和各井段井身參數是否符合設計要求,還應該校核井上曲率,井身剖面最大曲率應小於動力鑽具和下井套管抗彎曲強度允許的最大曲率。
目前,套用電腦程式進行井身剖面設計時,設計結果列表和均可由印表機和繪圖儀自動完成。
4.設計方法舉例
例某定向井設計全井垂深H=2-000米(靶點),上部地層300米至350米是流砂層,1000米至1050米有一高壓水層,作出井身剖面設計。
井口座標X1:3246535.0Y1:2054875.0
井底座標X2:3245972.95Y2:2054665.0

先根據井口與井底座標,計算出水平位移和目標方位。
(1)根據提供的地質資料,在進行剖面設計時,應設法使動力鑽具造斜的井段和增斜的井段避開流砂層和高壓水層。
(2)對於鑽井工藝及其它限制條件,在滿足(l)項條件的前提下,應選擇較簡單的剖面類型。
(3)剖面類型選用“直一增一穩”三段制井身剖面。此種剖面簡單,地面井口至目標點的井身長度短,有利於加快鑽井速度。
(4)選擇造斜點。根據垂直井深和水平位移的關係,造斜點應選在350米至600米間。如選在1050米以下,會使井斜角太大,是不合理的。
因300米至350米是流砂層,在井深結構設計時套用套管封固,以利於定向造斜,防止流砂層漏失、垮塌等複雜情況出現。造斜點應選在套管鞋以下不少於50米的地方為宜。因此,造斜點與井口之間井眼長度不應小於450米。
又因1000米至1050米是高壓水層,為了下部井段能順利鑽進,也應考慮下入一層中間套管封住高壓水層。為了減少井下複雜情況和有利於定向井井眼軌跡控制,在進行套管設計時,應避免套管鞋下在井眼曲率較大的井段中,中間套管的下入深度應進入穩斜井段150米左右為宜。在考慮上述因素後,造斜點的位置應在高壓水層以上不少於400米處,也就是造斜點與井口之間的井眼長度不應大於600米。
經過上述的分析,如果造斜點應在450米至600米之間選擇,那么,把造斜點確定在500米處是比較合理的。
(5)選擇造斜率K為7°/100米。根據造斜率計算造斜井段的曲率半徑R。

(6)計算最大井斜角αmax
R——造斜段曲率半徑,米。
把已知條件代入上式得:
αmax=24.4°
(7)分段井眼計算:

增斜段

穩斜段

4.三維定向井
設計的井眼軸線,既有井斜角的變化,又有方位角的變化,這類井段為三維定向井,實際作業中,有時會碰到三維定向井的問題,大體上分為三種情況。
第一種情況原設計為兩維定向井,在實鑽中偏離了目標方位,如果偏得不多,只要調整鑽具組合或扭一次方位就可以了。嚴格地說,實鑽的定向井軌跡,都有井斜角的變化和方位角的變化,這種三維定向井可以簡化為二維的。
第二種情況在地面井位和目標點確定的情況下,在這兩點的鉛垂平面內,存在著不允許通過或難以穿過的障礙物,不能在鉛垂平面上設計軌道,需要繞過障礙,設計繞障三維定向井。在海上叢式井經常碰到這類井。
第三種情況在地面井位確定的情況下,要鑽多目標井。地面井位和多目標點不在同一鉛垂平面內,只有井斜角和方位角都變化,才能鑽達設計的多個目標點。
三維定向井的軌跡設計和測斜計算很複雜,通常使用計算機軟體完成這些工作。
第三節井眼軌跡控制技術
井眼軌跡控制的內容包括:最佳化鑽具組合、優選鑽井參數、採用先進的井下工具和儀器、利用計算機進行井眼軌跡的檢測預測、利用地層的方位漂移規律、避免井下複雜情況等等。
軌跡控制貫穿鑽井作業的全過程,它是使實鑽井眼沿著設計軌道鑽達靶區的綜合性技術,也是定向井施工中的關鍵技術之一。
井眼軌跡控制技術按照定向井的工藝過程,可分為直井段、造斜段、增斜段、穩斜段、降斜段和扭方位井段等控制技術,其中直井段的控制技術見第七章第四節。
一.定向選斜井段
初始造斜方法有五類,即井下馬達和彎接頭定向、噴射法、造斜器法、彎曲導管定向、傾斜鑽機定向。目前,我國海洋定向井一般採用第一種方式,常用造斜鑽具組合為:鑽頭十井下馬達十彎接頭十非磁鑽鋌十普通鑽鋌(0~30米)十撓性接頭震擊器加重鑽桿
這種造斜鑽具組合是利用彎接頭使下部鑽具產生一個彈性力矩,迫使井下動力鑽具驅動鑽頭側向切削,使鑽出的新井眼偏離原井眼軸線,達到定向造斜或扭方位的目的。
造斜鑽具的造斜能力主要與彎接頭的彎角和動力鑽具的長度有關。彎接頭的彎角越大,動力鑽具長度越短,造斜率也越高。
彎接頭的彎角應根據井眼大小、井下動力鑽具的規格和要求造斜率的大小選擇。現場常用彎接頭的彎角為1.5~2.25度,一般不大於2.5度。彎接頭在不同條件下的造斜率見第四節。
造斜鑽具組合使用的井下動力鑽具型號應根據造斜井段或扭方位井段的井深選擇。使用井段在2000米以內,一般採用渦輪鑽具或普通螺桿鑽具,深層走向造斜或扭方位應使用耐高溫的多頭螺桿鑽具。
造斜鑽具組合、鑽井參數和鑽頭水眼應根據廠家推薦的鑽井參數設計。
由於井下動力鑽具的轉速高,要求的鑽壓小〔一般為29.4~78.4千牛(3~8噸)〕,因此,使用的鑽頭不宜採用密封軸承鑽頭,尤其是在淺層,可鑽性好的軟地層應使用銑齒滾動軸承鑽頭或合適的PDC鑽頭。
根據測斜儀器的種類不同,分為四種定向方式:
1.單點定向
此方法只適用造斜點較淺的情況,通常井深小於1000米。因為造斜點較深時,反扭角很難控制,且定向時間較長。施工過程如下:
(l)下入定向造斜鑽具至造斜點位置(注意:井下馬達必須按廠家要求進行地面試驗)。
(2)單點測斜,測量造斜位置的井斜角,方位角,彎接頭工具面;
(3)在測斜照相的同時,對方鑽桿和鑽桿進行列印,並把井口鑽桿的印痕投到轉盤面的外緣上,作為基準點;
(4)調整工具面(調整後的工具面是:設計方位角十反扭角)。鎖住轉盤、開泵鑽進;
(5)定向鑽進。每鑽進2~4個單根進行一次單點測斜,根據測量的井斜角和方位角及時修正反扭矩的誤差,並調整工具面;
(6)當井斜角達到8~10度和方位合適時,起鑽換增斜鑽具,用轉盤鑽進。在單點定向作業中要注意:
①在確定了反扭角和鑽壓後,要嚴格控制鑽壓的變化範圍,通常在預定鑽壓±19.6千牛(2噸)內變化;
②每次接單根時,鑽桿可能會轉動一點,注意轉動鑽桿的列印位置至預定位置;
③如果調整工具面的角度較大(>90度),調整後應活動鑽具2~3次(停泵狀態),以便鑽桿扭矩迅速傳遞。
2.地面記錄陀螺(SRO)定向
在有磁干擾環境的條件下(如套管開窗側鑽井)的定向造斜,需採用SRO定向。這種儀器可將井下數據通過電纜傳至地面處理系統,並顯示或用計算機列印出來,直至工具面調整到預定位置,再起出儀器,施工過程如下:
(l)選擇參照物,參照物應選擇易於觀察的固定目標,距井40米左右;
(2)預熱陀螺不少於15分鐘,工作正常才可下井;
(3)瞄準參照物,並調整陀螺初始讀數;
(4)接探管,連線陀螺外筒,再瞄準參照物,對探管和計算機初始化;
(5)下井測量,按規定作漂移檢查;
(6)起出儀器坐在井口,再次瞄準參照物記錄陀螺讀數;
(7)校正陀螺漂移,確定測量的精度;
(8)定向鑽進。
3.有線隨鑽測斜儀(SST)定向
造斜鑽具下到井底後,開泵循環半小時左右,然後接旁通頭或循環接頭。把測斜儀的井下儀器總成下入鑽桿內,使定向鞋的缺口坐在定向鍵上。定向造斜時,可從地面儀表直接讀出實鑽井眼的井斜、方位和工具面,司鑽和定向井工程師要始終跟蹤預定的工具面方向,保持井眼軌跡按預定方向鑽進。
4.隨鑽測量儀(MWD)定向
MWD井下儀器總成安裝在下部鑽具組合的非磁鑽鋌內,其下井前要調整好工作模式和傳輸速度,並準確地測量偏移值,輸入計算機。儀器在井下所測的井眼參數通過鑽井液脈衝傳至地面,信息經地面處理後,可迅速傳到鑽台。MWD不僅可用於定向造斜,也可用於旋轉鑽進中的連續測量,是一種先進的測量儀器。
5.定向造斜中的注意事項:
(1)如果定向作業前的裸眼段較長,應短起下鑽一趟,保證井眼暢通。
(2)井下馬達下井前應在井口試運轉,測量軸承間隙;記錄各種參數,工作正常方可下井;
(3)MWD等儀器下井前,必須輸入磁場強度、磁傾角等參數;
(4)定向造斜鑽進,要按規定加壓,均勻送鑽,以保持恆定的工具面。
(5)造斜鑽進或起下鑽,用旋扣鉗或動力水龍頭上卸扣,不得用轉盤上卸扣;
(6)起鑽前方位角必須在20~30米井段內保持穩定,且保證預定的提前角。目前,“一次造斜
到位法”也經常在我國海洋定向井中使用,這種方法適用於造斜點較淺,且機械鑽速很快的造斜井段,常常配合使用隨鑽測量儀。
(7)井下馬達出井時,按規定程式進行清洗、保養。

相關詞條

熱門詞條

聯絡我們