偏振性

偏振性

偏振(polarization)指的是波動能夠朝著不同方向振盪的性質。電磁波、引力波都會展示出偏振現象。傳播於氣體或液體的聲波不會展示出偏振現象,因為聲波只會朝著傳播方向振盪。振動對於傳播方向的不對稱性叫做偏振性,只有橫波才有偏振性。

基本介紹

  • 中文名:偏振
  • 外文名:polarization
理論概述,歷史,套用,偏光太陽鏡,天空中的偏振光,液晶顯示器,三維電影,偏振測量技術,測量應力,橢圓偏振測量術,地質學,

理論概述

大多數光源屬於非偏振光源,例如,太陽、白熾燈等等,因為它們所發射出的光波是由一組不同空間特徵、頻率(波長)、相位、偏振的光波隨機混合所組成。為了了解光波的偏振性質,最簡單的方法就是先只思考單色平面波,這種波是具有特定傳播方向、頻率、相位、振盪方向的正弦波。從研究平面波光學系統的性質與行為,可以對於一般案例給出預測,這是因為任何特定空間結構的光波都可以分解為一組不同頻率、不同振幅的平面波,稱為其角譜(angular spectrum)。

歷史

丹麥科學家拉斯穆·巴多林(Rasmus Bartholin)於1669年發現了光束通過冰洲石(Iceland spar)時會出現雙折射現象,假設照射光束於冰洲石,則這光束會被折射為兩道光束,一道光束遵守普通的折射定律,稱為“尋常光”,另外一道光束不遵守普通的折射定律,稱為“非常光”。巴多林無法解釋這現象的物理機制。後來,克里斯蒂安·惠更斯注意到這奇特現象,他在1690年著作《光論》的後半部里,對這現象有很詳細的論述;他認為,由於空間可能存在有兩種不同物質,所以才會出現兩道光束,它們分別對應於兩個不同的波前以不同的速度傳播於空間,所以,這不是很不平常的現象,但是,惠更斯又發現,這兩道光束與原本光束的性質大不相同,將其中任何一道光束照射於第二塊冰洲石,則折射出來的兩道光束,其輻照度會因為繞著光束軸旋轉冰洲石而改變,有時候甚至只會剩成一道光束。惠更斯猜想光波是縱波,他想出的簡單波動理論不能對這現象給出解釋。艾薩克·牛頓猜測,雙折射現象意味著組成光束的粒子具有側面(垂直於移動方向)性質。
1808年,法蘭西學術院提議,1810年物理獎比賽的題目為"對於雙折射給出數學理論,並且做實驗證實"。艾蒂安-路易·馬呂斯決定參與競爭。他做實驗觀察,日光照射於盧森堡宮的玻璃窗,然後被玻璃反射出來的光束,假若入射角度達到某特定數值,則這反射光與惠更斯觀察到的折射光具有類似的性質,他稱這性質為“偏振”性質。他猜想,組成光束的每一道光線都具有某種特別的不對稱性;當這些光線具有相同的不對稱性時,則光束具有偏振性;當這些光線的不對稱性分別機率地指向不同方向時,則光束具有非偏振性;當在這兩種案例之間時,則光束具有部分偏振性。不單是玻璃,任何透明的固體或液體都會產生這種現象。他又從實驗結果推論出馬呂斯定律,定量地給出偏振光通過檢偏器後的輻照度,考慮到偏振方向與檢偏器傳輸軸方向之間的夾角角度。這實驗極具創意,又得到了很豐碩的重要成果,馬呂思因此榮獲1810年的物理獎。馬呂思對於偏振現象做出諸多貢獻,後人尊稱他為“偏振之父”。
後來,奧古斯丁·菲涅耳與弗朗索瓦·阿拉戈合作研究偏振對於楊氏干涉實驗的影響,他們認為光波是縱波,呈縱向震盪,但是這縱波的概念無法合理解釋實驗結果。阿拉戈告訴托馬斯·楊這問題,托馬斯·楊大膽建議,假若光波是橫波,呈橫向震盪,則光波可以分解為兩個相互垂直的分量,或許這樣做可以對實驗結果給出解釋。果真,這建議清除了很多疑點。1817年,菲涅耳與阿拉戈將實驗結果定性總結為菲涅耳-阿拉戈定律(Fresnel-Arago laws),表述處於不同偏振態的光束彼此之間的干涉性質。之後,菲涅耳試圖進一步定量表述這實驗,他發展出的波動理論是一種振幅表述,主要是用光波的振幅相位來作分析;振幅表述能夠定量地解釋偏振光的物理性質;但非偏振光或部分偏振光不具有穩定的振幅與相位,無法用振幅表述給予解釋。
1852年,喬治·斯托克斯提出一種強度表述,能夠描述偏振光、非偏振光與部分偏振光的物理行為;只需要使用四個參數,後來稱為斯托克斯參數(Stokes parameters),就可以描述任何光束的偏振態,更重要地,這四個參數可以直接測量獲得。
那時,電磁學理論雜亂無章,詹姆斯·麥克斯韋將這些理論加以整合,於1865年提出麥克斯韋方程組。從這方程組,他推導出電磁波方程,推論出光波是一種電磁波,可以用麥克斯韋方程組作精確描述。菲涅耳的波動理論是建立於一些貌似合理的假定,由於能夠正確描述光波的一些物理行為,例如,傳播、衍射、偏振等等,符合實驗得到的結果,所以才被學術界接受。從麥克斯韋方程組可以嚴格地推導出菲涅耳的波動理論,給予這理論堅實穩固的基礎。

套用

偏光太陽鏡

照射非偏振光於鏡面表面(光亮表面),通常得到的反射光會具有某種程度的偏振。1808年,法國物理學者艾蒂安-路易·馬呂斯最先觀察到這現象。偏光太陽鏡利用這效應來降低水平表面反射出來的眩光,特別是當太陽從前方斜照下來時,張眼往前方路面望去會看到的強勁眩光

天空中的偏振光

傳播於地球大氣層的太陽光會因為被大氣分子瑞利散射而使得散射光產生偏振,從天空中的散射光可以觀察到這現象。散射光在清晰的天空中會顯得更明亮、更具色彩。在天空中,與太陽照射的光束呈直角方向的位置,最容易觀察到這偏振現象(偏振方向與太陽光方向、直角方向相垂直)。這種具有部分偏振的散射光,假若使用起偏器,可以使得照片裡的天空變得較黑,增加襯度(contrast);這樣,可以改良照片的品質。
出現在天空中的偏振光常被用來導航定向。從九世紀至十一世紀間,維京人時常航行於北大西洋。那時期,歐洲人尚未知道怎樣使用磁羅盤,維京人主要是使用太陽與星星來導航定向,可是,在陰天,這方法無效。學者猜測他們可能知道怎樣使用一種稱為“太陽石”(sunstone)的簡單儀器,但這爭議性理論尚未被證實。1950年代,運輸飛機航行在地磁極附近時,由於無法使用磁羅盤,假若無法看到太陽或星星時(例如,在陰天或黃昏),時常會使用“天空羅盤”(sky compass)來導航。這儀器是一種很精緻的偏光儀,可以用來觀測天空中的偏振光。十九世紀後期,查理斯·惠斯通(Charles Wheatstone)發明了偏振鐘(polar clock)。這也是一種偏光儀,可以用來計時。根據惠斯通,偏振鐘比日晷的優點更多。

液晶顯示器

液晶顯示器(LCD)科技倚賴液晶來旋轉偏振光的偏振平面。如右圖所示,在兩塊正交平面偏振片P1、P2之間置入透明電極層E1、E2和扭曲向列型液晶LC。照射非偏振光L於偏振片P1,透射光會呈平面偏振。
  • 上方圖:當E1、E2不通電時,液晶分子會呈螺旋狀排列,平面偏振光的偏振平面會被液晶LC逐漸扭曲,因此平面偏振光才能透射過正交的偏振片P2。假設安裝鏡子I,則透射過的平面偏振光會被反射回來(注意到顯示於鏡子的反射光箭頭),其偏振平面會再被液晶朝反方向扭曲,因此才能透射過正交的偏振片P1。從初始發光源位置朝著偏振片P1望去,會觀察到明亮的反射光。
  • 下方圖:當電極E1、E2通電時,液晶分子會順著電場方向排列,因此液晶不會扭曲平面偏振光的偏振平面,由於兩塊偏振片的偏振軸相互垂直,這時光線不能透射過偏振片P2。雖然安裝鏡子I,從原先發光源位置朝著平面偏振片P1望去,仍舊不會觀察到任何反射光。
套用這機制,液晶顯示器能夠顯示簡單的文字或圖案信息,它的主要優點是功耗較低,因此可以使用光電池來供電。
上電路斷開液晶亮 ;下迴路接通液晶不亮上電路斷開液晶亮 ;下迴路接通液晶不亮

三維電影

三維電影所使用的立體顯示技術將兩個不同影像分別傳輸至左眼、右眼。現今,這技術的首選方法是“偏振編碼”;使用兩台投影機將兩個不同影像都投射到投影屏,每一台投影機都安裝了偏振軸相互垂直的起偏器;或者使用單台能夠時分復用偏振的投影機(內部安裝了快速過濾交替偏振的元件)。三維眼鏡的左邊鏡片與右邊鏡片分別具有對應的檢偏器,確使每一隻眼睛只會接收到對應的偏振影像。早先,採用平面偏振編碼,因為費用較便宜、分離效果很好。但是,圓偏振所形成的分離影像不會受到觀眾頭部傾斜的影響。現今,三維電影已廣泛採用圓偏振技術,例如RealD 戲院系統。圓偏振技術需要使用特殊的投影屏,例如“銀屏”(silver screen),這種投影屏能夠維持投射影像的圓偏振,不會在反射時被非偏振化;普通的白色漫反射投影屏會造成投射影像在反射時被非偏振化,無法用來展示三維電影。

偏振測量技術

測量應力

假若兩塊不同類型的偏振片分別製成的兩種偏振光相互正交,則稱它們為“正交偏振片”。例如,水平偏振片與垂直偏振片分別製成的水平偏振光與垂直偏振光相互正交,它們是兩塊正交偏振片。類似地,左旋圓偏振片與右旋圓偏振片也是兩塊正交偏振片。這實驗設定簡單地組成偏光儀(polariscope),又稱“偏振光鏡”;光束最先入射的偏振片為起偏器,然後再入射的偏振片為檢偏器;水平偏振片與垂直偏振片共同組成“平面偏光儀”;左旋圓偏振片與右旋圓偏振片共同組成“圓偏光儀”。如右圖所示,假設照射光束於由水平偏振片製成的起偏器,因為透射過的水平偏振光會被由垂直偏振片製成的檢偏器吸收,不能透射過垂直偏振片;所以,光束無法通過兩塊正交偏振片共同組成的偏光儀,透射的幅照度為零。但是假設將雙折射物質置入偏光儀內,即兩塊正交偏振片之間,光束在通過雙折射物質的過程中,偏振會被旋轉,因此可以從偏光儀觀察到透射光的色彩圖樣,並且測量到其幅照度。

橢圓偏振測量術

橢圓偏振測量術是一種用途極廣的技術,可用來測量均勻表面的光學性質;簡略描述其程式,就是在均勻表面做鏡面反射後,測量光波的偏振態的改變;通常這函式的參數為入射角與波長。由於橢圓偏振測量術倚賴反射機制,樣品不需要具有透明性質,探測儀器也不需要從樣品背部測量透射光的輻照度,這技術還可以套用於吸光度極高的物質,並且不具有破壞性,只需要很少量的樣品就可以做測量。
橢圓偏振測量術也可以用來測量薄膜的復折射率與厚度。套用橢圓偏振技術,照射光束於薄膜樣品,然後分析反射光的偏振改變,即可估算複數折射率或介電函式張量,以此獲得基本的物理參數,這包括表面粗糙度(roughness)、晶體質量、化學成分或導電性。它常被用來鑑定單層或多層堆疊的薄膜厚度,可量測厚度由數Å到幾微米,甚至小至一個單原子層,並且準確性極高。

地質學

很多晶體礦石具有線性雙折射性質,這促成了偏振現象的初始發現。在礦物學里,偏振顯微鏡時常會套用這雙折射性質來辨識礦石。更詳盡說明,請參閱光學礦物學(optical mineralogy)。

相關詞條

熱門詞條

聯絡我們