Flash存儲器

Flash存儲器

FLASH快閃記憶體 的英文名稱是"Flash Memory",一般簡稱為"Flash",它屬於記憶體器件的一種,是一種非易失性( Non-Volatile )記憶體。快閃記憶體的物理特性與常見的記憶體有根本性的差異:目前各類 DDR 、 SDRAM 或者 RDRAM 都屬於揮發性記憶體,只要停止電流供應記憶體中的數據便無法保持,因此每次電腦開機都需要把數據重新載入記憶體;快閃記憶體在沒有電流供應的條件下也能夠長久地保持數據,其存儲特性相當於硬碟,這項特性正是快閃記憶體得以成為各類便攜型數字設備的存儲介質的基礎。

基本介紹

  • 中文名:Flash存儲器
  • 外文名:Flash Memory
  • 特點FLASH快閃記憶體
  • 所屬:記憶體器件
簡要介紹,概述,性能比較,接口差別,容量和成本,可靠性,耐用性,位交換,壞塊處理,易於使用,軟體支持,工作原理,發現者,套用,

簡要介紹

概述

快閃記憶體是一種非易失性( Non-Volatile )記憶體,在沒有電流供應的條件下也能夠長久地保持數據,其存儲特性相當於硬碟,這項特性正是快閃記憶體得以成為各類便攜型數字設備的存儲介質的基礎。
NAND 快閃記憶體的存儲單元則採用串列結構,存儲單元的讀寫是以頁和塊為單位來進行(一頁包含若干位元組,若干頁則組成儲存塊, NAND 的存儲塊大小為 8 到 32KB ),這種結構最大的優點在於容量可以做得很大,超過 512MB 容量的 NAND 產品相當普遍, NAND 快閃記憶體的成本較低,有利於大規模普及。
NAND 快閃記憶體的缺點在於讀速度較慢,它的 I/O 連線埠只有 8 個,比 NOR 要少多了。這區區 8 個 I/O 連線埠只能以信號輪流傳送的方式完成數據的傳送,速度要比 NOR 快閃記憶體的並行傳輸模式慢得多。再加上 NAND 快閃記憶體的邏輯為電子盤模組結構,內部不存在專門的存儲控制器,一旦出現數據壞塊將無法修,可靠性較 NOR 快閃記憶體要差。
NAND 快閃記憶體被廣泛用於移動存儲、數位相機、 MP3 播放器、掌上電腦等新興數字設備中。由於受到數碼設備強勁發展的帶動, NAND 快閃記憶體一直呈現指數級的超高速增長.
NOR和NAND是市場上兩種主要的非易失快閃記憶體技術。Intel於1988年首先開發出NOR flash技術,徹底改變了原先由EPROM和EEPROM一統天下的局面。緊接著,1989年,東芝公司發表了NAND flash結構,強調降低每比特的成本,更高的性能,並且象磁碟一樣可以通過接口輕鬆升級。但是經過了十多年之後,仍然有相當多的硬體工程師分不清NOR和NAND快閃記憶體
相“flash存儲器”經常可以與相“NOR存儲器”互換使用。許多業內人士也搞不清楚NAND快閃記憶體技術相對於NOR技術的優越之處,因為大多數情況下快閃記憶體只是用來存儲少量的代碼,這時NOR快閃記憶體更適合一些。而NAND則是高數據存儲密度的理想解決方案。
NOR的特點是晶片內執行(XIP, eXecute In Place),這樣應用程式可以直接在flash快閃記憶體內運行,不必再把代碼讀到系統RAM中。NOR的傳輸效率很高,在1~4MB的小容量時具有很高的成本效益,但是很低的寫入和擦除速度大大影響了它的性能。
NAND結構能提供極高的單元密度,可以達到高存儲密度,並且寫入和擦除的速度也很快。套用NAND的困難在於flash的管理和需要特殊的系統接口。

性能比較

flash快閃記憶體是非易失存儲器,可以對稱為塊的存儲器單元塊進行擦寫和再編程。任何flash器件的寫入操作只能在空或已擦除的單元內進行,所以大多數情況下,在進行寫入操作之前必須先執行擦除。NAND器件執行擦除操作是十分簡單的,而NOR則要求在進行擦除前先要將目標塊內所有的位都寫為0。
由於擦除NOR器件時是以64~128KB的塊進行的,執行一個寫入/擦除操作的時間為5ms,與此相反,擦除NAND器件是以8~32KB的塊進行的,執行相同的操作最多只需要4ms。
執行擦除時塊尺寸的不同進一步拉大了NOR和NADN之間的性能差距,統計表明,對於給定的一套寫入操作(尤其是更新小檔案時),更多的擦除操作必須在基於NOR的單元中進行。這樣,當選擇存儲解決方案時,設計師必須權衡以下的各項因素。
● NOR的讀速度比NAND稍快一些。
● NAND的寫入速度比NOR快很多。
● NAND的4ms擦除速度遠比NOR的5ms快。
● 大多數寫入操作需要先進行擦除操作。
● NAND的擦除單元更小,相應的擦除電路更少。

接口差別

NOR flash帶有SRAM接口,有足夠的地址引腳定址,可以很容易地存取其內部的每一個位元組。
NAND器件使用複雜的I/O口來串列地存取數據,各個產品或廠商的方法可能各不相同。8個引腳用來傳送控制、地址和數據信息。
NAND讀和寫操作採用512位元組的塊,這一點有點像硬碟管理此類操作,很自然地,基於NAND的存儲器就可以取代硬碟或其他塊設備

容量和成本

NAND flash的單元尺寸幾乎是NOR器件的一半,由於生產過程更為簡單,NAND結構可以在給定的模具尺寸內提供更高的容量,也就相應地降低了價格。
NOR flash占據了容量為1~16MB快閃記憶體市場的大部分,而NAND flash只是用在8MB~128GB的產品當中,這也說明NOR主要套用在代碼存儲介質中,NAND適合於數據存儲,NAND在CompactFlash、Secure Digital、PC Cards和MMC存儲卡市場上所占份額最大。

可靠性

採用flash介質時一個需要重點考慮的問題是可靠性。對於需要擴展MTBF的系統來說,Flash是非常合適的存儲方案。可以從壽命(耐用性)、位交換和壞塊處理三個方面來比較NOR和NAND的可靠性。

耐用性

在NAND快閃記憶體中每個塊的最大擦寫次數是一百萬次,而NOR的擦寫次數是十萬次。NAND存儲器除了具有10比1的塊擦除周期優勢,典型的NAND塊尺寸要比NOR器件小8倍,每個NAND存儲器塊在給定的時間內的刪除次數要少一些。

位交換

所有flash器件都受位交換現象的困擾。在某些情況下(很少見,NAND發生的次數要比NOR多),一個比特位會發生反轉或被報告反轉了。
比特位反轉比特位反轉
一位的變化可能不很明顯,但是如果發生在一個關鍵檔案上,這個小小的故障可能導致系統停機。如果只是報告有問題,多讀幾次就可能解決了。
當然,如果這個位真的改變了,就必須採用錯誤探測/錯誤更正(EDC/ECC)算法。位反轉的問題更多見於NAND快閃記憶體,NAND的供應商建議使用NAND快閃記憶體的時候,同時使用EDC/ECC算法。
這個問題對於用NAND存儲多媒體信息時倒不是致命的。當然,如果用本地存儲設備來存儲作業系統、配置檔案或其他敏感信息時,必須使用EDC/ECC系統以確保可靠性。

壞塊處理

NAND器件中的壞塊是隨機分布的。以前也曾有過消除壞塊的努力,但發現成品率太低,代價太高,根本不划算。
NAND器件需要對介質進行初始化掃描以發現壞塊,並將壞塊標記為不可用。在已製成的器件中,如果通過可靠的方法不能進行這項處理,將導致高故障率。

易於使用

可以非常直接地使用基於NOR的快閃記憶體,可以像其他存儲器那樣連線,並可以在上面直接運行代碼。
由於需要I/O接口,NAND要複雜得多。各種NAND器件的存取方法因廠家而異。
在使用NAND器件時,必須先寫入驅動程式,才能繼續執行其他操作。向NAND器件寫入信息需要相當的技巧,因為設計師絕不能向壞塊寫入,這就意味著在NAND器件上自始至終都必須進行虛擬映射。

軟體支持

當討論軟體支持的時候,應該區別基本的讀/寫/擦操作和高一級的用於磁碟仿真和快閃記憶體管理算法的軟體,包括性能最佳化。
在NOR器件上運行代碼不需要任何的軟體支持,在NAND器件上進行同樣操作時,通常需要驅動程式,也就是記憶體技術驅動程式(MTD),NAND和NOR器件在進行寫入和擦除操作時都需要MTD。
使用NOR器件時所需要的MTD要相對少一些,許多廠商都提供用於NOR器件的更高級軟體,這其中包括M-System的TrueFFS驅動,該驅動被Wind River System、Microsoft、QNX Software System、Symbian和Intel等廠商所採用。

工作原理

發現者

1957年,受僱於索尼公司江崎玲於奈(Leo Esaki,1925~)在改良高頻電晶體2T7的過程中發現,當增加PN結兩端的電壓時電流反而減少,江崎玲於奈將這種反常的負電阻現象解釋為隧道效應。此後,江崎利用這一效應製成了隧道二極體(也稱江崎二極體)。
1960年,美裔挪威籍科學家加埃沃(Ivan Giaever,1929~)通過實驗證明了在超導體隧道結中存在單電子隧道效應。在此之前的1956年出現的“庫珀對”及BCS理論被公認為是對超導現象的完美解釋,單電子隧道效應無疑是對超導理論的一個重要補充。
1962年,年僅22歲的英國劍橋大學實驗物理學研究生約瑟夫森(Brian David Josephson,1940~)預言,當兩個超導體之間設定一個絕緣薄層構成SIS(Superconductor-Insulator-Superconductor)時,電子可以穿過絕緣體從一個超導體到達另一個超導體。約瑟夫森的這一預言不久就為P.W.安德森和J.M.羅厄耳的實驗觀測所證實——電子對通過兩塊超導金屬間的薄絕緣層(厚度約為10埃)時發生了隧道效應,於是稱之為“約瑟夫森效應”。 巨觀量子隧道效應確立了微電子器件進一步微型化的極限,當微電子器件進一步微型化時必須要考慮上述的量子效應。例如,在製造半導體積體電路時,當電路的尺寸接近電子波長時,電子就通過隧道效應而穿透絕緣層,使器件無法正常工作。因此,巨觀量子隧道效應已成為微電子學、光電子學中的重要理論。

套用

快閃記憶體
快閃記憶體的存儲單元為三端器件,與場效應管有相同的名稱:源極、漏極和柵極。柵極與矽襯底之間有二氧化矽絕緣層,用來保護浮置柵極中的電荷不會泄漏。採用這種結構,使得存儲單元具有了電荷保持能力,就像是裝進瓶子裡的水,當你倒入水後,水位就一直保持在那裡,直到你再次倒入或倒出,所以快閃記憶體具有記憶能力。
與場效應管一樣,快閃記憶體也是一種電壓控制型器件。NAND型快閃記憶體的擦和寫均是基於隧道效應,電流穿過浮置柵極與矽基層之間的絕緣層,對浮置柵極進行充電(寫數據)或放電(擦除數據)。而NOR型快閃記憶體擦除數據仍是基於隧道效應(電流從浮置柵極到矽基層),但在寫入數據時則是採用熱電子注入方式(電流從浮置柵極到源極)。
場效應管工作原理場效應電晶體(Field Effect Transistor縮寫(FET))簡稱場效應管。一般的電晶體是由兩種極性的載流子,即多數載流子和反極性的少數載流子參與導電,因此稱為雙極型電晶體,而FET僅是由多數載流子參與導電,它與雙極型相反,也稱為單極型電晶體。它屬於電壓控制型半導體器件,具有輸入電阻高(108~109Ω)、噪聲小、功耗低、動態範圍大、易於集成、沒有二次擊穿現象、安全工作區域寬等優點,現已成為雙極型電晶體和功率電晶體的強大競爭者。

相關詞條

熱門詞條

聯絡我們