細菌生物膜

細菌生物膜

生物膜(biofilm)也稱為生物被膜,是指附著於有生命或無生命物體表面被細菌胞外大分子包裹的有組織的細菌群體。生物膜細菌對抗生素和宿主免疫防禦機制的抗性很強。生物膜中存在各種主要的生物大分子如蛋白質、多糖、DNA、RNA、肽聚糖、脂和磷脂等物質。生物膜多細胞結構的形成是一個動態過程,包括細菌起始粘附、生物膜發展和成熟擴散等階段。

基本介紹

  • 中文名:細菌生物膜
  • 外文名:Biofilm
  • 別名:細菌生物被膜
生物膜介紹,形成動態過程,定殖階段,集聚階段,成熟階段,脫落與再定殖,培養檢測方法,菌膜培養,常用菌膜測量,最新研究進展,

生物膜介紹

生物被膜是微生物有組織生長的聚集體。細菌不可逆的附著於惰性或活性實體的表面,繁殖、分化,並分泌一些多糖基質,將菌體群落包裹其中而形成的細菌聚集體膜狀物。單個生物被膜可由一種或多種不同的微生物形成。
通過對微生物在固體表面定植中起支配作用的特殊現象進行了大量研究,逐漸認識到這些微生膜的形成包含複雜的理化過程和生物群落的相互作用。
在海洋環境中,所有類型的表面,如岩石、植物、動物和裝配式結構都可能被生物膜侵占。
近年來,隨著醫學界對某些環境中常見細菌所致的一些慢性和頑固性疾病的深入了解,發現生物被膜是導致這些細菌性疾病難以根治的主要原因。以生物被膜形式存在的細菌不同於浮游細菌,它們對抗生素等殺菌劑、惡劣環境及宿主免疫防禦機制有很強的抗性,生物被膜內的細菌在生理、代謝、對底物的降解或利用和對環境的抵抗能力等方面都具有獨特的性質。
細菌生物被膜主要包括分泌的多糖蛋白、多糖基質、纖維蛋白、脂蛋白等多糖蛋白複合物。成熟生物被膜模型從外到內包括主體生物膜層、連線層、條件層、基質層。

形成動態過程

細菌形成生物被膜是一個動態的過程,主要可分為四個階段:細菌可逆性粘附的定殖階段、不可逆性粘附的集聚階段、生物被膜的成熟階段和細菌的脫落與再定植階段。

定殖階段

當浮游細菌與惰性物體表面或活性實體的表面接觸後,浮游細菌會粘附到物體表面,啟動在物體表面形成生物被膜。在這個階段,單個附著細胞僅由少量胞外聚合物包裹,還未進入生物被膜的形成過程,很多菌體還可重新進入浮游狀態,因此這時細菌的粘附是可逆的。

集聚階段

細菌在經過初始的定殖粘附後,一些特定基因的表達開始調整,與形成生物被膜相關的基因被激活,細菌在生長繁殖的同時分泌大量胞外聚合物粘結細菌。在這個階段,細菌對物體表面的粘附更為牢固,是不可逆的。

成熟階段

細菌與物體表面經過不可逆的粘附階段後,生物被膜的形成逐漸進入成熟期。成熟的生物被膜形成高度有組織的結構,由類似蘑菇狀或堆狀的微菌落組成,在這些微菌落之間圍繞著大量通道,可以運送養料、酶、代謝產物和排出廢物等。因此,成熟的生物被膜內部結構被比喻為原始的循環系統。

脫落與再定殖

成熟的生物被膜通過蔓延、部分脫落或釋放出浮游細等進行擴展,脫落或釋放出來的細菌重新變為浮游菌,它們又可以在物體表面形成新的生物被膜。

培養檢測方法

菌膜培養

菌膜的培養可分為兩種,一種為靜止培養,一種為動態培養。靜止培養是指在選定的特定吸附材料表面上對細菌進行常規的靜止培養,以使細菌在靜止的環境中粘附於固相介質表面形成菌膜。動態培養可以為細菌提供一個動態的生長環境,在動態環境下觀察細菌在固相介質表面形成菌膜的情況。現在評價菌膜的形成能力,多需要這兩種方法的綜合運用,以便最大限度的模擬細菌形成菌膜的實際生長環境,得到不同生長狀態下菌膜的形成情況。例如,Rieu等用這兩種方法觀察菌膜的形成,就發現靜止條件下菌膜的形成比流式培養條件下要少。另外,還經常要用到活細胞(例如HT-29上皮細胞)來觀察細菌在生物材料上形成菌膜的情況。

常用菌膜測量

1、96孔酶標板結晶紫法
該法用於觀察靜置培養的細菌菌膜,操作簡單、成本低廉,是目前測量菌膜生成量最常用的方法。Djordjevic等對31株單核細胞增生李斯特菌在含有特定培養基的PVC微孔板中進行培養後,用1%的結晶紫染色,然後用乙酸進行脫色,通過測量洗脫結晶紫後脫色液的OD值來直接確定菌膜的形成量。
2、顯微鏡觀察法
用螢光顯微鏡、雷射共聚焦掃描顯微鏡、透射及掃描電鏡觀察在氣液交接處或特定材料上由細菌形成的明顯膜狀菌膜的情況的方法。細菌單純的粘附並不等於形成菌膜,只有細菌包被於自身的胞外多糖等物質中的狀態才算具有菌膜的特徵。因此單純依靠96孔酶標板結晶紫法只能鑑定細菌的粘附情況,還需要通過螢光染色等方法來觀察多糖物質等的生成才能判斷菌膜的形成情況。
3、直接觀測法
漂浮的菌膜或薄膜(pellicles),是在培養基的氣液交界面形成的另一種有典型特徵的菌膜。由於缺少固相介質,細菌一開始生長時便會對自身組織有更多地需求,並且由於暴露於空氣中的界面缺少強氣流的衝擊使得形成的菌膜結構更加複雜。此外,結構形態和細胞產胞外基質的能力這兩者之間有明顯的關係,菌落觀察在形態學上的套用也很廣泛。

最新研究進展

最近,美國德州農工大學研究人員掌握了一種細胞之間的“交談”方式,不僅能精確控制細菌產出化學產品,也能更有效地控制生物膜的形成和解體。這一發現在醫療、衛生和工業領域都有著巨大的套用價值,尤其使生物反應器技術向前邁進了一大步。研究論文發表在近日的《自然·通訊》網站上。
《美國國家科學院刊》(PNAS)發表的一篇新報導發現,細菌生物膜與結直腸癌有關。這是首次在結直腸癌當中發現了細菌生物膜。
最近來自國外的一項研究發現,細菌可以利用一種未知的方式來抵制抗生素對其的傷害,研究者們發現這種細菌可以修飾自身的管家酶(housekeeping enzyme),進而使得自己的管家酶識別作用的抗生素,並且使得抗生素“繳械投降”。這項研究刊登在了新一期的國際著名雜誌PNAS上。
細菌生物膜
澳大利亞新南威爾斯大學近日宣布,該校科學家用納米微粒打碎了頑固的細菌生物膜。這一發現將為細菌生物膜引起的慢性炎症提供治療思路。應對生物膜細菌的耐藥性,主要有兩條思路:一是研發新的抗生素;二是打碎生物膜,把細菌分割開來。此次,新南威爾斯大學的科學家就是用納米微粒打碎了頑固的細菌生物膜。
加利福尼亞大學系統生物學家GürolSüelü,想要弄明白褶皺脊如何生成的。褶皺脊被認為有助於生物膜更有效地交換養分。GürolSüelü和他的同事發現死細胞積累在脊下,但不知道誰先誰後:細胞死亡還是類似腳手架的結構形成。為解決這個‘蛋與雞’的問題,GürolSüelü和他的同事們首先踏上了‘生物膜上細胞死亡’的探索之路。研究團隊製備了土壤細菌枯草芽孢桿菌的許多突變體。每個突變缺失一個被認為參與生物膜形成的基因。在每一種情況下,研究團隊注意是否基因增強或抑制細胞死亡。研究團隊還追蹤了細胞死亡的時間和地點。總的來說,有一個細胞死亡的固定模式,他們發現:只有特定的細胞補丁會解體。
細菌生物膜

相關詞條

熱門詞條

聯絡我們