膜材

膜結構工程中所使用的材料,由高強度的織物基材和聚合物塗層構成的複合材料。塗層對基材起保護作用,並形成膜材料的密封性能

基本介紹

  • 中文名:膜材
  • 選擇:根據建築物使用年限
  • 材料組成:醋酸纖維素
  • 主要構型:便於貯存
概述,中文名,選擇:,材料組成,主要構型,基材與塗層組合,

概述

中文名

膜材

選擇:

一、膜材應根據建築物使用年限、建築功能、建築物所處的環境、建築物防火要求及建築物承受的荷載進行選擇。
二、膜結構配件應根據膜結構的受力特點、使用要求、製作安裝要求等因素進行選擇。

材料組成

1.醋酸纖維素: 醋酸纖維素(CA)膜是由二醋酸纖維素和三醋酸纖維素的鑄膜液及二者混合物澆鑄而成。隨著乙醯基含量的增加,鹽截留率與化學穩定性增加而水通量下降。Loeb-Sourirajan 不對稱結構是使用一“醫用刮刀”(“doctor blade”)把CA、乙醇或乙醚溶液澆鑄在一多孔基片(如帆布)上,表面經空氣乾燥產生一薄皮層而形成。在較大孔層之上的緻密表皮是由約0.2μm厚的薄層組成,膜的總厚度約100μm.該技術也可用於管狀的和中空纖維狀膜的澆鑄。
CA膜的化學穩定性差,在運轉期間會發生水解, 其水解速度與溫度及pH條件有關。醋酸纖維素膜可在溫度0~30℃及pH值4.0~6.5下連續操作。這些東麗膜產品也會被生物侵蝕, 但由於它們具有可連續暴露在低含氯量環境下的能力,故可以消除生物侵蝕。膜穩定性差的結果導致膜截留率隨操作時間增長而下降。然而, 這些材料的普及是由於它們具備廣泛的來源和低廉的價格。
2.芳香聚醯胺:不對稱芳香聚醯胺(Aramid)膜(Richter和Hoehn 1971)以中空纖維形式為所首創。這些纖維是由溶液紡絲而成。由控制紡絲液溶劑的蒸發在纖維外表面形成約0.1~1.0μm的緻密表皮層。餘下的纖維結構是約26μm厚的一層多孔支撐結構。鹽的截流作用發生在緻密層。為了進一步提高截留性能,當中空纖維膜用於苦鹹水脫鹽時,對膜採用聚乙烯基甲基醚(PT-A)進行後處理,用於海水脫鹽則用PT-A與鞣酸(PT-A)作後處理。
與纖維素膜相比,芳香聚醯胺膜的特點是具有優良的化學穩定性。它們能在溫度0~30℃ pH4~11件連續操作,且不會被生物侵蝕。然而芳香聚醯胺膜若連續暴露在含氯環境中,則易受氯侵蝕,因此,對他們處理的進料液進行脫氯是重要的。
3. 薄膜複合膜:美國內政部鹽水局於年代中期基金資助的North Star Research 和Development Institute(位於 Minneapolis)的工作( Francis 1966; Rozelle等 1967)導致了薄膜複合膜的發展。Universal Oil Products的 Fluid Systems Division( Riley等1967)在70年代中期推出了它的商品(薄膜複合物)膜,而FilmTec公司在80年代初期推出了它的FT30複合膜(Cadotte等1980) 。在這些膜結構中,超薄柵層在一多孔織物支撐體上的微孔聚碸表面上形成(即0.2μm厚)。該聚碸上的柵層是由聚醯胺或聚脲的"就地"界面聚合技術產生的。
薄膜複合膜的優點與它們的化學性質有關,其最主要的特點是有較大的化學穩定性,在中等壓力下操作就具有高水通量和鹽截留率及抗生物侵蝕。它們能在溫度0~40℃及pH2~12間連續操作。像芳香聚醯胺一樣,這些材料的抗氯及其他氧化物的性能差。

主要構型

反滲透膜 (什麼是反滲透膜?) 需要製成一定構型才可用於水處理。如今膜的構型主要有平板式,管式,卷式和中空纖維式,但常用於水處理的是卷式和中空纖維式兩種。
對於卷式構型,常用膜有醋酸纖維素膜和複合膜,利用這些膜製成膜元件,把膜元件放在壓力容器中構成膜組件。用於製作卷式構型的膜一般先製成平整的膜,醋酸纖維素膜的結構見圖1,上部有一層緻密的薄層(0.1-1.0μmm),即脫鹽層,脫鹽層下面有一層稍厚(100~200μm)的多孔支撐層,水很容易通過緻密層流向多孔層。緻密層是半透膜層,能有效阻止鹽分的通過,起脫鹽作用。
複合膜由三層組成,它們是:最上面的超薄脫鹽層、中間的多孔的聚碸內夾層,最下面的聚酯支撐網層。由於聚酯支撐層不很平坦和多孔,不能用來直接支撐脫鹽層,因而在該支撐層上面澆注一層聚碸微孔層,用於直接支撐脫鹽層。聚碸層表面孔徑可控制在0.015μm。脫鹽層厚度為0.2μm,在聚碸層的支撐下,能承受較高的壓力,抗機械壓力和化學侵蝕能力強。
對於中空纖維構型,利用芳香族聚醯胺膜製成的眾多中空纖維直接裝配在壓力容器內,構成用於水脫鹽的基本單元--膜組件。
無論是卷式還是中空纖維式,對其構型的共同要求如下:
1) 對膜能提供適當的機械支撐,以便承受一定的給水壓力;
2) 能使給水,濃水和產品水各行其道,不混合;
3) 使有一定壓力的給水在通過膜面上時,能均勻分布,並有良好的流動狀態,是濃差計畫降至最低;
4) 膜本身具有的脫鹽率和透水量能在構型中得到充分的利用;
5) 膜面積能得到最大限度的利用
6) 便於貯存,運輸,裝卸和更換;
7) 易於製造,維護方便,牢固且安全可靠;
8) 價格有競爭力。
1. 螺旋卷式
首先敘述卷式膜元件的概念。葉片有兩張平展開的膜和一張聚酯織物組成,聚酯織物在兩張膜的中間,葉片一端膠接起來形成一個袋,另一端(伸出來的聚酯織物)與帶孔的PVC管粘接。葉片之間有塑膠網,它們一起沿PVC中心管卷繞形成卷式構型。塑膠端部裝置粘接到卷式的葉片兩端,一端起反伸縮裝置(ATD)的作用,另一端起濃水密封的載體作用。玻璃鋼(FRP)材料的外表面保護卷式構型。這樣,形成了一個完整的膜元件。
卷式膜元件裝入壓力容器內試驗,性能符合要求即可出售。前面提到的聚酯織物是起產品水收集通道的作用。塑膠網一是作為濃水(給水)通道;二是起加強給水通道水流紊動的作用,以便把濃差極化減少到最低程度。因為卷式反滲透裝置的給水從膜元件的給水端流向濃水端,並平行於膜表面,這種水流方向就有濃差極化的傾向,因而葉片之間的塑膠網是極為重要的。
卷式膜元件廣泛用於苦鹹水的脫鹽,用於要求產水量較大的脫鹽時,通常使用直徑為101.6mm(4in) 或203.2mm(8in ),長度為1016mm (40in)或1524mm(60in)的膜元件。
把一個或幾個膜元件連線起來,裝在圓筒形的壓力容器內,即構成卷式膜組件。
壓力給水進入第一個膜元件,並在該膜元件的螺旋卷繞之間的通道內流動。一部分給水滲透過膜,並通過卷式通道流到膜元件中心的產品水收集管,另一部分給水沿著膜元件長度方向繼續流動至第二個膜元件,這一過程依次進行。每個膜元件的產品水通過公共產品水管流成。當給水每通過下一個膜元件時,給水濃度增大,流過最後一個膜元件時,給水成為濃水,並排出壓力容器。
2. 中空纖維式:
眾多中空纖維膜裝配在壓力容器內構成中空纖維式膜組件。如今常用的是杜邦公司生產的用於苦鹹水脫鹽的B-9型中空纖維膜組件,現以此為例說明。中空纖維外徑為85μm,內徑為42μm,壁厚為21.5μm。該纖維在其表面有一層很薄得緻密層(即芳香族聚酯胺膜的脫鹽層),該層用以阻止鹽的透過,而能使水流穩定通過。在此薄層下面有一較厚的同樣材料的多孔層,用來支撐脫鹽層。該層能讓水通過它流至中空纖維的內孔。
中空纖維比人的頭髮還細,儘管其壁薄,外徑與內徑比率差少為2:1,猶如厚壁圓柱,但其有自支撐作用,且強度足夠承受較高的壓力而不變形,不損壞。
對處理水量較大的系統,可使用102×1194或203×1219的膜組件。壓力容器內幾乎全部充滿纖維束,在纖維之間有約25μm的水通路。纖維束間是用無紡布隔開的,然後纏繞,整個纖維束分24層,纖維束最外層包有導流網,以利濃水導流。,空心纖維在壓力容器內呈U型平行排列,在纖維中間的進水管道的一端用於進加壓後的給水,另一端封堵密封,在其長度方向上有很多孔。纖維束的U型底部一端用環氧樹脂固定密封,另一端通過環氧樹脂板固定,並敞開中空纖維孔。進水管道內的水徑向流往纖維束里的許多纖維。有一部分水滲透進中空纖維孔內,成為產品水,經環氧樹脂圓環引出,另一部分在纖維束外邊緣(即壓力容器內邊緣)軸向流往壓力容器的端部,成為濃水,不斷排走,並依靠O型密封環防止給水,濃水和產品水的混合。

基材與塗層組合

組合
基材
塗層
1
玻璃纖維
聚四氟乙烯
2
玻璃纖維
氟化樹脂
3
玻璃纖維
聚氯乙烯
4
聚酯類纖維
聚氯乙烯
5
聚乙烯醇類纖維
聚氯乙烯
6
聚醯胺類纖維
聚氯乙烯
註:表中的氟化樹脂是指除了聚四氟乙烯以外的氟化樹脂。
膜材

相關詞條

熱門詞條

聯絡我們